
Let $f:R\to R$ and $g:R\to R$ be two non-constant differentiable function. If $f'(x)={{e}^{(f(x)-g(x))}}g'(x)$ for all $x\in R$ , and f ( 1 ) = g ( 2 ) = 1, then which of the following statement(s) is are true?
( a ) $f(2)<1-{{\log }_{e}}2$
( b ) $f(2)>1-{{\log }_{e}}2$
( c ) $g(1)>1-{{\log }_{e}}2$
( d ) $g(1)<1-{{\log }_{e}}2$
Answer
511.8k+ views
Hint: To solve this question, first we will separate the question by variable separation method, then we will integrate the function. After that, we will use some properties of positive real numbers and also of exponential and logarithmic function and hence we will obtain the two relations.
Complete step-by-step answer:
Now, it is given that $f'(x)={{e}^{(f(x)-g(x))}}g'(x)$.
So, we can write $f'(x)={{e}^{(f(x)-g(x))}}g'(x)$ as
\[f'(x)={{e}^{f(x)}}{{e}^{-g(x)}}g'(x)\]
Or, \[\dfrac{f'(x)}{{{e}^{f(x)}}}={{e}^{-g(x)}}g'(x)\]
Or, \[{{e}^{-f(x)}}f'(x)={{e}^{-g(x)}}g'(x)\]
Or, \[{{e}^{-f(x)}}f'(x)-{{e}^{-g(x)}}g'(x)=0\]
Integrating both side, we get
\[\int{({{e}^{-f(x)}}f'(x)-{{e}^{-g(x)}}g'(x))}=\int{0}dx\]
Or, \[\int{{{e}^{-f(x)}}f'(x)-\int{{{e}^{-g(x)}}g'(x})}={{c}_{1}}\], as integration of 0 is constant
Let, f ( x ) = t, then f’( x )dx = dt
And, g ( x ) = u, then g’( x )dx = du
\[\int{{{e}^{-t}}dt-\int{{{e}^{-u}}du}}={{c}_{1}}\]
We know that $\int{{{e}^{ax}}dx=\dfrac{{{e}^{ax}}}{a}+c}$ ,
So, $-{{e}^{-t}}+{{c}_{2}}-(-{{e}^{-u}})+{{c}_{3}}={{c}_{1}}$
On simplifying, we get
$-{{e}^{-t}}+{{e}^{-u}}={{c}_{1}}-{{c}_{2}}-{{c}_{3}}$
On replacing t and u, we get
$-{{e}^{-f(x)}}+{{e}^{-g(x)}}=c$, where ${{c}_{1}}-{{c}_{2}}-{{c}_{3}}=c$
So, $-{{e}^{-f(x)}}+{{e}^{-g(x)}}=c$is constant function.
Now at x = 1 and x = 2, we get
$-{{e}^{-f(1)}}+{{e}^{-g(1)}}=c$ and $-{{e}^{-f(2)}}+{{e}^{-g(2)}}=c$,
So, $-{{e}^{-f(1)}}+{{e}^{-g(1)}}=-{{e}^{-f(2)}}+{{e}^{-g(2)}}$
Also it is given in question that f ( 1 ) = g ( 2 ) = 1, we get
\[-{{e}^{-1}}+{{e}^{-g(1)}}=-{{e}^{-f(2)}}+{{e}^{-1}}\]
On simplifying, we get
\[-\dfrac{1}{e}+{{e}^{-g(1)}}=-{{e}^{-f(2)}}+\dfrac{1}{e}\]
Or, \[{{e}^{-g(1)}}+{{e}^{-f(2)}}=\dfrac{1}{e}+\dfrac{1}{e}\]
Again, on simplification
\[{{e}^{-g(1)}}+{{e}^{-f(2)}}=\dfrac{2}{e}\]
Now, as exponential function is always positive for any real x,
So, if we have two positive quantities say, a and b and if on adding we get c which will also be positive,
That is, a + b = c, then a < c and b < c
So, for \[{{e}^{-g(1)}}+{{e}^{-f(2)}}=\dfrac{2}{e}\], we can say that
\[{{e}^{-g(1)}}<\dfrac{2}{e}\] and \[{{e}^{-f(2)}}<\dfrac{2}{e}\]
Taking log on both side, we get
\[\ln ({{e}^{-g(1)}})<\ln \left( \dfrac{2}{e} \right)\]and \[\ln ({{e}^{-f(2)}})<\ln \left( \dfrac{2}{e} \right)\]
As we know that ${{\ln }_{a}}({{a}^{f(x)}})=f(x)$ ,
So, \[-g(1)<\ln \left( \dfrac{2}{e} \right)\] and \[-f(2)<\ln \left( \dfrac{2}{e} \right)\],
We know that, \[\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b\]and ln( e ) = 1, then we get
$f(2)>1-{{\log }_{e}}2$ and $g(1)>1-{{\log }_{e}}2$
So, the correct answers are “Option (b) and (c)”.
Note: To solve such question one must know all functions properties properly, and always some formulas and values of log such that \[\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b\], ${{\ln }_{a}}({{a}^{f(x)}})=f(x)$ and ln( e ) = 1. Try to avoid silly calculation errors in the solution of the question.
Complete step-by-step answer:
Now, it is given that $f'(x)={{e}^{(f(x)-g(x))}}g'(x)$.
So, we can write $f'(x)={{e}^{(f(x)-g(x))}}g'(x)$ as
\[f'(x)={{e}^{f(x)}}{{e}^{-g(x)}}g'(x)\]
Or, \[\dfrac{f'(x)}{{{e}^{f(x)}}}={{e}^{-g(x)}}g'(x)\]
Or, \[{{e}^{-f(x)}}f'(x)={{e}^{-g(x)}}g'(x)\]
Or, \[{{e}^{-f(x)}}f'(x)-{{e}^{-g(x)}}g'(x)=0\]
Integrating both side, we get
\[\int{({{e}^{-f(x)}}f'(x)-{{e}^{-g(x)}}g'(x))}=\int{0}dx\]
Or, \[\int{{{e}^{-f(x)}}f'(x)-\int{{{e}^{-g(x)}}g'(x})}={{c}_{1}}\], as integration of 0 is constant
Let, f ( x ) = t, then f’( x )dx = dt
And, g ( x ) = u, then g’( x )dx = du
\[\int{{{e}^{-t}}dt-\int{{{e}^{-u}}du}}={{c}_{1}}\]
We know that $\int{{{e}^{ax}}dx=\dfrac{{{e}^{ax}}}{a}+c}$ ,
So, $-{{e}^{-t}}+{{c}_{2}}-(-{{e}^{-u}})+{{c}_{3}}={{c}_{1}}$
On simplifying, we get
$-{{e}^{-t}}+{{e}^{-u}}={{c}_{1}}-{{c}_{2}}-{{c}_{3}}$
On replacing t and u, we get
$-{{e}^{-f(x)}}+{{e}^{-g(x)}}=c$, where ${{c}_{1}}-{{c}_{2}}-{{c}_{3}}=c$
So, $-{{e}^{-f(x)}}+{{e}^{-g(x)}}=c$is constant function.
Now at x = 1 and x = 2, we get
$-{{e}^{-f(1)}}+{{e}^{-g(1)}}=c$ and $-{{e}^{-f(2)}}+{{e}^{-g(2)}}=c$,
So, $-{{e}^{-f(1)}}+{{e}^{-g(1)}}=-{{e}^{-f(2)}}+{{e}^{-g(2)}}$
Also it is given in question that f ( 1 ) = g ( 2 ) = 1, we get
\[-{{e}^{-1}}+{{e}^{-g(1)}}=-{{e}^{-f(2)}}+{{e}^{-1}}\]
On simplifying, we get
\[-\dfrac{1}{e}+{{e}^{-g(1)}}=-{{e}^{-f(2)}}+\dfrac{1}{e}\]
Or, \[{{e}^{-g(1)}}+{{e}^{-f(2)}}=\dfrac{1}{e}+\dfrac{1}{e}\]
Again, on simplification
\[{{e}^{-g(1)}}+{{e}^{-f(2)}}=\dfrac{2}{e}\]
Now, as exponential function is always positive for any real x,
So, if we have two positive quantities say, a and b and if on adding we get c which will also be positive,
That is, a + b = c, then a < c and b < c
So, for \[{{e}^{-g(1)}}+{{e}^{-f(2)}}=\dfrac{2}{e}\], we can say that
\[{{e}^{-g(1)}}<\dfrac{2}{e}\] and \[{{e}^{-f(2)}}<\dfrac{2}{e}\]
Taking log on both side, we get
\[\ln ({{e}^{-g(1)}})<\ln \left( \dfrac{2}{e} \right)\]and \[\ln ({{e}^{-f(2)}})<\ln \left( \dfrac{2}{e} \right)\]
As we know that ${{\ln }_{a}}({{a}^{f(x)}})=f(x)$ ,
So, \[-g(1)<\ln \left( \dfrac{2}{e} \right)\] and \[-f(2)<\ln \left( \dfrac{2}{e} \right)\],
We know that, \[\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b\]and ln( e ) = 1, then we get
$f(2)>1-{{\log }_{e}}2$ and $g(1)>1-{{\log }_{e}}2$
So, the correct answers are “Option (b) and (c)”.
Note: To solve such question one must know all functions properties properly, and always some formulas and values of log such that \[\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b\], ${{\ln }_{a}}({{a}^{f(x)}})=f(x)$ and ln( e ) = 1. Try to avoid silly calculation errors in the solution of the question.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
