
Let $f:R \to R$ is a function satisfying the condition $f(x + {y^3}) = f(x) + {[f(y)]^3}$ for all $x,y \in R$. If $f'(0) \geqslant 0$ then find $f(10)$.
Answer
557.7k+ views
Hint: Substitute the values of $x,y$ as zero in the given equation to find the value of $f(0)$. From this value, calculate the value of $f'(0)$ using the formula of limits. Finally, find the value of $f(x)$ from these values and substitute the value of $x$ as $10$ to find $f(10)$.
Complete step by step answer:
It is given to us that $f(x + {y^3}) = f(x) + {[f(x)]^3}$ and $f'(0) \geqslant 0$
In order to find the value of $f(0)$ let us substitute $x = 0,y = 0$ in the given equation.
The equation now becomes $f(0 + 0) = f(0) + {[f(0)]^3}$ which is $f(0) = f(0) + f(0)$
Therefore, the value of $f(0)$ is zero. Now, let us calculate the value of $f'(0)$
$f'(0) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(h)}}{h}$ since the value of $f(0)$ is zero.
Let us assume that this equation is $I$ and hence $I = f'(0)$
We can also write this value as
$ \Rightarrow I = f'(0) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + {{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}^3}) - f(0)}}{{{{({h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}})}^3}}}$
Since the value of $f(0)$ is zero, the above expression becomes
$ \Rightarrow I = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + {{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}^3})}}{{{{({h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}})}^3}}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{[f({h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}})]}^3}}}{{{{({h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}})}^3}}}$
This expression can be written as
$ \Rightarrow I = \mathop {\lim }\limits_{h \to 0} {\left( {\dfrac{{f\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}}{{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}}} \right)^3} = {I^3}$
For $I = {I^3}$ the possible values of $I$ are $ - 1,1,0$ but it is already given to us that $f'(0) \geqslant 0$ so the possible values become $0,1$
In the same way we can calculate the value of $f'(x)$
$ \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$ and we write this value as
$ \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + {{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}^3}) - f(x)}}{{{{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}^3}}}$
From the given equation,
$ \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x) + {{[f\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)]}^3} - f(x)}}{{{{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}^3}}}$
By solving, we get
$ \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} {\left( {\dfrac{{f({h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}})}}{{{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}}}} \right)^3} = {I^3} = {\left( {f'(0)} \right)^3}$
We already know the possible values of ${I^3}$ so now the possible values of $f'(x)$ are $0,1$.
If $f'(x) = 0$, by integrating we get $f(x) = c$ where c is the constant.
If $f'(x) = 1$, by integrating we get $f(x) = x + c$
Since $f(0) = 0$ the value of c would be zero.
Now, if we substitute $x = 10$, $f(10) = 0$ or $f(10) = 10$
Therefore the value of $f(10)$ is $0$ or $10$.
Note: It should be noted that since $f'(0) \geqslant 0$, $f'(0)$ could have multiple values so one should not make a mistake by considering only one value. Similarly when $f'(x)$ is integrated, one should not forget to take the constant c into consideration.
Complete step by step answer:
It is given to us that $f(x + {y^3}) = f(x) + {[f(x)]^3}$ and $f'(0) \geqslant 0$
In order to find the value of $f(0)$ let us substitute $x = 0,y = 0$ in the given equation.
The equation now becomes $f(0 + 0) = f(0) + {[f(0)]^3}$ which is $f(0) = f(0) + f(0)$
Therefore, the value of $f(0)$ is zero. Now, let us calculate the value of $f'(0)$
$f'(0) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(h)}}{h}$ since the value of $f(0)$ is zero.
Let us assume that this equation is $I$ and hence $I = f'(0)$
We can also write this value as
$ \Rightarrow I = f'(0) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + {{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}^3}) - f(0)}}{{{{({h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}})}^3}}}$
Since the value of $f(0)$ is zero, the above expression becomes
$ \Rightarrow I = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(0 + {{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}^3})}}{{{{({h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}})}^3}}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{[f({h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}})]}^3}}}{{{{({h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}})}^3}}}$
This expression can be written as
$ \Rightarrow I = \mathop {\lim }\limits_{h \to 0} {\left( {\dfrac{{f\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}}{{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}}} \right)^3} = {I^3}$
For $I = {I^3}$ the possible values of $I$ are $ - 1,1,0$ but it is already given to us that $f'(0) \geqslant 0$ so the possible values become $0,1$
In the same way we can calculate the value of $f'(x)$
$ \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$ and we write this value as
$ \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + {{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}^3}) - f(x)}}{{{{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}^3}}}$
From the given equation,
$ \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x) + {{[f\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)]}^3} - f(x)}}{{{{\left( {{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}} \right)}^3}}}$
By solving, we get
$ \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} {\left( {\dfrac{{f({h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}})}}{{{h^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 3}}\right.}
\!\lower0.7ex\hbox{$3$}}}}}}} \right)^3} = {I^3} = {\left( {f'(0)} \right)^3}$
We already know the possible values of ${I^3}$ so now the possible values of $f'(x)$ are $0,1$.
If $f'(x) = 0$, by integrating we get $f(x) = c$ where c is the constant.
If $f'(x) = 1$, by integrating we get $f(x) = x + c$
Since $f(0) = 0$ the value of c would be zero.
Now, if we substitute $x = 10$, $f(10) = 0$ or $f(10) = 10$
Therefore the value of $f(10)$ is $0$ or $10$.
Note: It should be noted that since $f'(0) \geqslant 0$, $f'(0)$ could have multiple values so one should not make a mistake by considering only one value. Similarly when $f'(x)$ is integrated, one should not forget to take the constant c into consideration.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

