
Let $f:\mathbb{R}\to \mathbb{R}$ be a function defined by $f\left( x \right)=\max \left\{ x,{{x}^{3}} \right\}$. The set of all points where $f\left( x \right)$ is not differentiable is
A. $\left\{ -1,1 \right\}$
B. $\left\{ -1,0 \right\}$
C. $\left\{ 0,1 \right\}$
D. $\left\{ -1,0,1 \right\}$
Answer
477.9k+ views
Hint: We have to find the continuity and the differentiability of the given piecewise function at certain points. We use the points and respective functions to find the maximum value that will be available to operate. We take the final conclusion depending on the equality of the theorem $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)$ for differentiability where \[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\].
Complete step-by-step answer:
We have to show the continuity and the differentiability of the given function at certain intervals.
If the function is not continuous at certain points, then the function will never be differentiable at those points.
We check the continuity for the points $\left\{ -1,0,1 \right\}$.
$f\left( x \right)=\max \left\{ x,{{x}^{3}} \right\}=\left\{ \begin{align}
& x\text{ }x\in \left( -\infty ,-1 \right) \\
& {{x}^{3}}\text{ }x\in \left[ -1,0 \right] \\
& x\text{ }x\in \left( 0,1 \right) \\
& {{x}^{3}}\text{ }x\in \left[ 1,\infty \right) \\
\end{align} \right.$
For the function if the condition $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)$ satisfies then it will be differentiable where \[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\].
Here ${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]$.
We check differentiability at three different points of $x=\left\{ -1,0,1 \right\}$.
At $x=-1$, we get
\[\begin{align}
& \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( x \right) \right]}_{x=\left( -1 \right)}}=1 \\
& \underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( {{x}^{3}} \right) \right]}_{x=\left( -1 \right)}}={{\left[ 3{{x}^{2}} \right]}_{x=\left( -1 \right)}}=3 \\
\end{align}\]
Therefore, $f\left( x \right)$ is not differentiable at $x=-1$ as \[\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\].
At $x=0$, we get
\[\begin{align}
& \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( {{x}^{3}} \right) \right]}_{x=0}}={{\left[ 3{{x}^{2}} \right]}_{x=0}}=0 \\
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( x \right) \right]}_{x=0}}=1 \\
\end{align}\]
Therefore, $f\left( x \right)$ is not differentiable at $x=0$ as \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\].
At $x=1$, we get
\[\begin{align}
& \underset{x\to {{1}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( x \right) \right]}_{x=1}}=1 \\
& \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( {{x}^{3}} \right) \right]}_{x=1}}={{\left[ 3{{x}^{2}} \right]}_{x=1}}=3 \\
\end{align}\]
Therefore, $f\left( x \right)$ is not differentiable at $x=1$ as \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\].
Therefore, $f\left( x \right)$ is not differentiable at points $\left\{ -1,0,1 \right\}$. The correct option is D.
So, the correct answer is “Option D”.
Note: This type of differentiability checking is called differentiability of piecewise function. A piecewise function is differentiable at a point if both of the pieces have derivatives at that point, and the derivatives are equal at that point.
Complete step-by-step answer:
We have to show the continuity and the differentiability of the given function at certain intervals.
If the function is not continuous at certain points, then the function will never be differentiable at those points.
We check the continuity for the points $\left\{ -1,0,1 \right\}$.
$f\left( x \right)=\max \left\{ x,{{x}^{3}} \right\}=\left\{ \begin{align}
& x\text{ }x\in \left( -\infty ,-1 \right) \\
& {{x}^{3}}\text{ }x\in \left[ -1,0 \right] \\
& x\text{ }x\in \left( 0,1 \right) \\
& {{x}^{3}}\text{ }x\in \left[ 1,\infty \right) \\
\end{align} \right.$
For the function if the condition $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)$ satisfies then it will be differentiable where \[{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\].
Here ${{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]$.
We check differentiability at three different points of $x=\left\{ -1,0,1 \right\}$.
At $x=-1$, we get
\[\begin{align}
& \underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( x \right) \right]}_{x=\left( -1 \right)}}=1 \\
& \underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( {{x}^{3}} \right) \right]}_{x=\left( -1 \right)}}={{\left[ 3{{x}^{2}} \right]}_{x=\left( -1 \right)}}=3 \\
\end{align}\]
Therefore, $f\left( x \right)$ is not differentiable at $x=-1$ as \[\underset{x\to {{\left( -1 \right)}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{\left( -1 \right)}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\].
At $x=0$, we get
\[\begin{align}
& \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( {{x}^{3}} \right) \right]}_{x=0}}={{\left[ 3{{x}^{2}} \right]}_{x=0}}=0 \\
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( x \right) \right]}_{x=0}}=1 \\
\end{align}\]
Therefore, $f\left( x \right)$ is not differentiable at $x=0$ as \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\].
At $x=1$, we get
\[\begin{align}
& \underset{x\to {{1}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( x \right) \right]}_{x=1}}=1 \\
& \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)={{\left[ \dfrac{d}{dx}\left( {{x}^{3}} \right) \right]}_{x=1}}={{\left[ 3{{x}^{2}} \right]}_{x=1}}=3 \\
\end{align}\]
Therefore, $f\left( x \right)$ is not differentiable at $x=1$ as \[\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\].
Therefore, $f\left( x \right)$ is not differentiable at points $\left\{ -1,0,1 \right\}$. The correct option is D.
So, the correct answer is “Option D”.
Note: This type of differentiability checking is called differentiability of piecewise function. A piecewise function is differentiable at a point if both of the pieces have derivatives at that point, and the derivatives are equal at that point.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

