
Let \[f\left( x \right)=x{{e}^{x\left( 1-x \right)}},\text{ }x\in R\]. Then
(a) \[{{f}^{'}}\left( x \right)\ge 0\text{ in }\left[ \dfrac{-1}{2},1 \right]\]
(b) \[{{f}^{'}}\left( x \right)<0\text{ in }\left[ \dfrac{-1}{2},1 \right]\]
(c) \[{{f}^{'}}\left( x \right)\ge 0\forall x\in R\]
(d) \[{{f}^{'}}\left( x \right)<0\forall x\in R\]
Answer
598.2k+ views
Hint: If \[h(x)\] is a composite function given by \[h(x)=f(g(x))\] , then\[h'(x)=f'(g(x))\times g'(x)\]. Use the fact that if \[{{x}_{1}}\] and \[{{x}_{2}}\]are the roots of any quadratic equation of \[x\]given by \[f(x)\equiv a{{x}^{2}}+bx+c=0\], where \[a,b\]and \[c\] are real and \[a>0\], then \[f({{x}_{3}})\le 0,\forall {{x}_{3}}\in [{{x}_{1}},{{x}_{2}}]\] and hence , \[-f({{x}_{3}})\ge 0,\forall {{x}_{3}}\in [{{x}_{1}},{{x}_{2}}]\]
Complete step-by-step answer:
The given function is \[f\left( x \right)=x{{e}^{x\left( 1-x \right)}}\]
It is of the type \[f\left( x \right)=g\left( x \right).h\left( p\left( x \right) \right)\]where \[g\left( x \right)=x\text{, }h\left( x \right)={{e}^{x}}\text{, }p\left( x \right)=x\left( 1-x \right)\]
Now ,first we will determine the derivative of the function \[h(p(x))\]with respect to \[x\] . It will be helpful while applying product rules to determine the derivative of \[f\left( x \right)\].
Clearly, we can see \[{{e}^{x\left( 1-x \right)}}\]is a composite function . So , to determine the value of the derivative of \[{{e}^{x\left( 1-x \right)}}\] with respect to \[x\], we need to apply chain rule of differentiation. The chain rule of differentiation is given as: “If \[h(x)\] is a composite function given by \[h(x)=f(g(x))\] , then the derivative of \[h(x)\]with respect to \[x\]is \[h'(x)=f'(g(x))\times g'(x)\].”
So , \[\dfrac{d}{dx}h\left( p\left( x \right) \right)=\dfrac{d}{dx}{{e}^{x\left( 1-x \right)}}\]
\[={{e}^{x\left( 1-x \right)}}.\dfrac{d}{dx}\left( x\left( 1-x \right) \right)\]
\[={{e}^{x\left( 1-x \right)}}.\dfrac{d}{dx}p\left( x \right)\]
Now to evaluate \[\dfrac{d}{dx}p\left( x \right)\], we need to apply product rule.
Now , we know , the product rule of differentiation is given as “If \[y\]is a function given as \[y=f(x).g(x)\], then the derivative of \[y\]with respect to \[x\]is given as \[y'=\dfrac{d}{dx}(f(x).g(x))=g(x).{{f}^{'}}(x)+f(x).{{g}^{'}}(x)\]”.
So , \[\dfrac{d}{dx}p\left( x \right)=\dfrac{d}{dx}x\left( 1-x \right)\]
\[=x\left( -1 \right)+\left( 1-x \right).1\]
\[=-x+1-x\]
\[=1-2x\]
\[\therefore \dfrac{d}{dx}h\left( p\left( x \right) \right)={{e}^{x\left( 1-x \right)}}.\left( 1-2x \right)\]
Now , we will evaluate the derivative of \[f\left( x \right)\]with respect to\[x\].
To evaluate the derivative of \[f\left( x \right)\]with respect to\[x\], i.e. \[\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( g\left( x \right).h\left( p\left( x \right) \right) \right)\], we need to apply product rule.
So , \[{{f}^{'}}\left( x \right)=\dfrac{d}{dx}h\left( p\left( x \right) \right).g\left( x \right)+h\left( p\left( x \right) \right).\dfrac{d}{dx}\left( g\left( x \right) \right)\]
\[={{e}^{x\left( 1-x \right)}}.\left( 1-2x \right).x+{{e}^{x\left( 1-x \right)}}.1\]
\[={{e}^{x\left( 1-x \right)}}.\left( 1+x-2{{x}^{2}} \right)\]
\[=-2{{e}^{x\left( 1-x \right)}}\left( x-1 \right)\left( x+\dfrac{1}{2} \right)\]
Now , we can see \[{{f}^{'}}\left( x \right)=0\]at \[x=-\dfrac{1}{2}\]and at \[x=1\].
We know , \[{{e}^{x\left( 1-x \right)}}\ge 0\forall x\in R\] and \[\left( x-1 \right)\left( x+\dfrac{1}{2} \right)\] represents a quadratic in \[x\].
Now , if \[{{x}_{1}}\] and \[{{x}_{2}}\]are the roots of any quadratic equation of \[x\]given by \[f(x)\equiv a{{x}^{2}}+bx+c=0\], where \[a,b\]and \[c\] are real and \[a>0\], then \[f({{x}_{3}})\le 0,\forall {{x}_{3}}\in [{{x}_{1}},{{x}_{2}}]\] and hence , \[-f({{x}_{3}})\ge 0,\forall {{x}_{3}}\in [{{x}_{1}},{{x}_{2}}]\]
So , \[{{f}^{'}}\left( x \right)\ge 0\] when \[-\dfrac{1}{2}\le x\le 1\].
So , \[{{f}^{'}}\left( x \right)\ge 0\]in \[\left[ -\dfrac{1}{2},1 \right]\].
OPTION (a) is the correct answer.
Note: \[{{e}^{x\left( 1-x \right)}}\]is a composite function. Hence , its derivative will be \[{{e}^{x\left( 1-x \right)}}.\left( 1-2x \right)\]and not \[{{e}^{x\left( 1-x \right)}}\]. Students generally make this mistake . These details should be taken care of and such mistakes should be avoided as these mistakes result in getting a wrong answer .
Complete step-by-step answer:
The given function is \[f\left( x \right)=x{{e}^{x\left( 1-x \right)}}\]
It is of the type \[f\left( x \right)=g\left( x \right).h\left( p\left( x \right) \right)\]where \[g\left( x \right)=x\text{, }h\left( x \right)={{e}^{x}}\text{, }p\left( x \right)=x\left( 1-x \right)\]
Now ,first we will determine the derivative of the function \[h(p(x))\]with respect to \[x\] . It will be helpful while applying product rules to determine the derivative of \[f\left( x \right)\].
Clearly, we can see \[{{e}^{x\left( 1-x \right)}}\]is a composite function . So , to determine the value of the derivative of \[{{e}^{x\left( 1-x \right)}}\] with respect to \[x\], we need to apply chain rule of differentiation. The chain rule of differentiation is given as: “If \[h(x)\] is a composite function given by \[h(x)=f(g(x))\] , then the derivative of \[h(x)\]with respect to \[x\]is \[h'(x)=f'(g(x))\times g'(x)\].”
So , \[\dfrac{d}{dx}h\left( p\left( x \right) \right)=\dfrac{d}{dx}{{e}^{x\left( 1-x \right)}}\]
\[={{e}^{x\left( 1-x \right)}}.\dfrac{d}{dx}\left( x\left( 1-x \right) \right)\]
\[={{e}^{x\left( 1-x \right)}}.\dfrac{d}{dx}p\left( x \right)\]
Now to evaluate \[\dfrac{d}{dx}p\left( x \right)\], we need to apply product rule.
Now , we know , the product rule of differentiation is given as “If \[y\]is a function given as \[y=f(x).g(x)\], then the derivative of \[y\]with respect to \[x\]is given as \[y'=\dfrac{d}{dx}(f(x).g(x))=g(x).{{f}^{'}}(x)+f(x).{{g}^{'}}(x)\]”.
So , \[\dfrac{d}{dx}p\left( x \right)=\dfrac{d}{dx}x\left( 1-x \right)\]
\[=x\left( -1 \right)+\left( 1-x \right).1\]
\[=-x+1-x\]
\[=1-2x\]
\[\therefore \dfrac{d}{dx}h\left( p\left( x \right) \right)={{e}^{x\left( 1-x \right)}}.\left( 1-2x \right)\]
Now , we will evaluate the derivative of \[f\left( x \right)\]with respect to\[x\].
To evaluate the derivative of \[f\left( x \right)\]with respect to\[x\], i.e. \[\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}\left( g\left( x \right).h\left( p\left( x \right) \right) \right)\], we need to apply product rule.
So , \[{{f}^{'}}\left( x \right)=\dfrac{d}{dx}h\left( p\left( x \right) \right).g\left( x \right)+h\left( p\left( x \right) \right).\dfrac{d}{dx}\left( g\left( x \right) \right)\]
\[={{e}^{x\left( 1-x \right)}}.\left( 1-2x \right).x+{{e}^{x\left( 1-x \right)}}.1\]
\[={{e}^{x\left( 1-x \right)}}.\left( 1+x-2{{x}^{2}} \right)\]
\[=-2{{e}^{x\left( 1-x \right)}}\left( x-1 \right)\left( x+\dfrac{1}{2} \right)\]
Now , we can see \[{{f}^{'}}\left( x \right)=0\]at \[x=-\dfrac{1}{2}\]and at \[x=1\].
We know , \[{{e}^{x\left( 1-x \right)}}\ge 0\forall x\in R\] and \[\left( x-1 \right)\left( x+\dfrac{1}{2} \right)\] represents a quadratic in \[x\].
Now , if \[{{x}_{1}}\] and \[{{x}_{2}}\]are the roots of any quadratic equation of \[x\]given by \[f(x)\equiv a{{x}^{2}}+bx+c=0\], where \[a,b\]and \[c\] are real and \[a>0\], then \[f({{x}_{3}})\le 0,\forall {{x}_{3}}\in [{{x}_{1}},{{x}_{2}}]\] and hence , \[-f({{x}_{3}})\ge 0,\forall {{x}_{3}}\in [{{x}_{1}},{{x}_{2}}]\]
So , \[{{f}^{'}}\left( x \right)\ge 0\] when \[-\dfrac{1}{2}\le x\le 1\].
So , \[{{f}^{'}}\left( x \right)\ge 0\]in \[\left[ -\dfrac{1}{2},1 \right]\].
OPTION (a) is the correct answer.
Note: \[{{e}^{x\left( 1-x \right)}}\]is a composite function. Hence , its derivative will be \[{{e}^{x\left( 1-x \right)}}.\left( 1-2x \right)\]and not \[{{e}^{x\left( 1-x \right)}}\]. Students generally make this mistake . These details should be taken care of and such mistakes should be avoided as these mistakes result in getting a wrong answer .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

