
Let $f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt$ , where $g$ is a non-zero even function. If $f\left( x+5 \right)=g\left( x \right)$ , then $\int\limits_{0}^{x}{f\left( t \right)}dt$ equals.
(a) $\int\limits_{x+5}^{5}{g\left( t \right)}dt$
(b) $5\int\limits_{x+5}^{5}{g\left( t \right)}dt$
(c) $\int\limits_{5}^{x+5}{g\left( t \right)}dt$
(d) $5\int\limits_{5}^{x+5}{g\left( t \right)}dt$
Answer
610.5k+ views
Hint: For solving this question first we will do some substitutions like replace $x\to -x$ in $f\left( x+5 \right)=g\left( x \right)$ and solve further to prove that $f$ is an odd function. After that, we will differentiate $f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt$ with respect to $x$ for proving \[{f}'\left( x \right)=g\left( x \right)\] and further we will substitute $t=u+5$ in the integral $\int\limits_{0}^{x}{f\left( t \right)}dt$ and solve for the final answer.
Complete step-by-step solution -
Given:
It is given that $f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt$ , where $g$ is a non-zero even function and $f\left( x+5 \right)=g\left( x \right)$ , then we have to solve for $\int\limits_{0}^{x}{f\left( t \right)}dt$ .
Now, it is given that $g$ is a non-zero even function. Then,
$g\left( x \right)=g\left( -x \right)...................\left( 1 \right)$
Now, as it is given that $f\left( x+5 \right)=g\left( x \right)$ and if we replace $x\to -x$ . Then,
$\begin{align}
& f\left( x+5 \right)=g\left( x \right) \\
& \Rightarrow f\left( 5-x \right)=g\left( -x \right) \\
\end{align}$
Now, from equation (1) we can write $g\left( x \right)=g\left( -x \right)$ . Then,
$\begin{align}
& f\left( 5-x \right)=g\left( -x \right) \\
& \Rightarrow f\left( 5-x \right)=g\left( x \right) \\
\end{align}$
Now, we know that $f\left( x+5 \right)=g\left( x \right)$ . Then,
$\begin{align}
& f\left( 5-x \right)=g\left( x \right) \\
& \Rightarrow f\left( 5-x \right)=f\left( x+5 \right)................\left( 2 \right) \\
\end{align}$
Now, as it is given that $f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt$ and if we replace $x\to -x$ . Then,
$\begin{align}
& f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt \\
& \Rightarrow f\left( -x \right)=\int\limits_{0}^{-x}{g\left( t \right)}dt \\
\end{align}$
Now, substitute $t=-u$ in the above integral then, the differential $dt$ will change accordingly, upper and lower limits of the integral $\int\limits_{0}^{-x}{g\left( t \right)}dt$ will change. And for the upper limit, we will find $u$ when $t=-x$ similarly, for the lower limit find $u$ when $t=0$ . Then,
$\begin{align}
& t=-u \\
& \Rightarrow t=0=-u \\
& \Rightarrow u=0 \\
& t=-u \\
& \Rightarrow t=-x=-u \\
& \Rightarrow u=x \\
& t=-u \\
& \Rightarrow dt=-du \\
& f\left( -x \right)=\int\limits_{0}^{-x}{g\left( t \right)}dt \\
& \Rightarrow f\left( -x \right)=-\int\limits_{0}^{x}{g\left( -u \right)}du \\
\end{align}$
Now, as it is given that $g$ is a non-zero even function, we can write $g\left( -u \right)=g\left( u \right)$. Then,
$\begin{align}
& f\left( -x \right)=-\int\limits_{0}^{x}{g\left( -u \right)}du \\
& \Rightarrow f\left( -x \right)=-\int\limits_{0}^{x}{g\left( u \right)}du \\
\end{align}$
Now, as it is given that $f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt$ so, we can write $\int\limits_{0}^{x}{g\left( u \right)}du=f\left( x \right)$ in the above equation. Then,
$\begin{align}
& f\left( -x \right)=-\int\limits_{0}^{x}{g\left( u \right)}du \\
& \Rightarrow f\left( -x \right)=-f\left( x \right)....................\left( 3 \right) \\
\end{align}$
Now, from the above result, we conclude that $f$ is an odd function.
Now, we will differentiate the $f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt$ with respect to $x$ . Then,
\[\begin{align}
& f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt \\
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{d\left( \int\limits_{0}^{x}{g\left( t \right)}dt \right)}{dx} \\
& \Rightarrow {f}'\left( x \right)=g\left( x \right)...........................\left( 4 \right) \\
\end{align}\]
Now, as it is given that $f\left( x+5 \right)=g\left( x \right)$ . Then,
\[{f}'\left( x \right)=f\left( x+5 \right)..................\left( 5 \right)\]
Now, we will solve for $\int\limits_{0}^{x}{f\left( t \right)}dt$ . First substitute $t=u+5$ then, the differential $dt$ will change accordingly, upper and lower limits of the integral $\int\limits_{0}^{x}{f\left( t \right)}dt$ will change. And for the upper limit, we will find $u$ when $t=x$ similarly, for the lower limit find $u$ when $t=0$ . Then,
$\begin{align}
& t=u+5 \\
& \Rightarrow t=0=u+5 \\
& \Rightarrow u=-5 \\
& t=u+5 \\
& \Rightarrow t=x=u+5 \\
& \Rightarrow u=x-5 \\
& t=u+5 \\
& \Rightarrow dt=du \\
& \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{-5}^{x-5}{f\left( u+5 \right)}du \\
\end{align}$
Now, from equation (5) we know that \[{f}'\left( x \right)=f\left( x+5 \right)\] so, we can replace $f\left( u+5 \right)={f}'\left( u \right)$ . Then,
$\begin{align}
& \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{-5}^{x-5}{f\left( u+5 \right)}du \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{-5}^{x-5}{{f}'\left( u \right)}du \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=\left[ f\left( u \right) \right]_{-5}^{x-5} \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( x-5 \right)-f\left( -5 \right) \\
\end{align}$
Now, from equation (3) we know that $f\left( -x \right)=-f\left( x \right)$ so, we can write $f\left( x-5 \right)=-f\left( 5-x \right)$ and $f\left( -5 \right)=-f\left( 5 \right)$ in the above equation. Then,
$\begin{align}
& \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( x-5 \right)-f\left( -5 \right) \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=-f\left( 5-x \right)+f\left( 5 \right) \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( 5 \right)-f\left( 5-x \right) \\
\end{align}$
Now, from equation (2) we can write $f\left( 5-x \right)=f\left( x+5 \right)$ in the above equation. Then,
\[\begin{align}
& \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( 5 \right)-f\left( 5-x \right) \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( 5 \right)-f\left( x+5 \right) \\
\end{align}\]
Now, we can write \[f\left( 5 \right)-f\left( x+5 \right)=\int\limits_{5+x}^{5}{{f}'\left( t \right)dt}\] in the above equation. Then,
\[\begin{align}
& \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( 5 \right)-f\left( x+5 \right) \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{5+x}^{5}{{f}'\left( t \right)dt} \\
\end{align}\]
Now, from equation (4) we know that \[{f}'\left( x \right)=g\left( x \right)\] so, we can write \[\int\limits_{5+x}^{5}{{f}'\left( t \right)dt}=\int\limits_{5+x}^{5}{g\left( t \right)dt}\] in the above equation. Then,
\[\begin{align}
& \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{5+x}^{5}{{f}'\left( t \right)dt} \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{5+x}^{5}{g\left( t \right)dt} \\
\end{align}\]
Now, from the above result, we conclude that \[\int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{5+x}^{5}{g\left( t \right)dt}\] .
Hence, (a) will be the correct option.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer. Moreover, we should proceed in a stepwise manner for smooth calculation and make the right substitutions while solving the question. And we should avoid making calculation mistakes while solving.
Complete step-by-step solution -
Given:
It is given that $f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt$ , where $g$ is a non-zero even function and $f\left( x+5 \right)=g\left( x \right)$ , then we have to solve for $\int\limits_{0}^{x}{f\left( t \right)}dt$ .
Now, it is given that $g$ is a non-zero even function. Then,
$g\left( x \right)=g\left( -x \right)...................\left( 1 \right)$
Now, as it is given that $f\left( x+5 \right)=g\left( x \right)$ and if we replace $x\to -x$ . Then,
$\begin{align}
& f\left( x+5 \right)=g\left( x \right) \\
& \Rightarrow f\left( 5-x \right)=g\left( -x \right) \\
\end{align}$
Now, from equation (1) we can write $g\left( x \right)=g\left( -x \right)$ . Then,
$\begin{align}
& f\left( 5-x \right)=g\left( -x \right) \\
& \Rightarrow f\left( 5-x \right)=g\left( x \right) \\
\end{align}$
Now, we know that $f\left( x+5 \right)=g\left( x \right)$ . Then,
$\begin{align}
& f\left( 5-x \right)=g\left( x \right) \\
& \Rightarrow f\left( 5-x \right)=f\left( x+5 \right)................\left( 2 \right) \\
\end{align}$
Now, as it is given that $f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt$ and if we replace $x\to -x$ . Then,
$\begin{align}
& f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt \\
& \Rightarrow f\left( -x \right)=\int\limits_{0}^{-x}{g\left( t \right)}dt \\
\end{align}$
Now, substitute $t=-u$ in the above integral then, the differential $dt$ will change accordingly, upper and lower limits of the integral $\int\limits_{0}^{-x}{g\left( t \right)}dt$ will change. And for the upper limit, we will find $u$ when $t=-x$ similarly, for the lower limit find $u$ when $t=0$ . Then,
$\begin{align}
& t=-u \\
& \Rightarrow t=0=-u \\
& \Rightarrow u=0 \\
& t=-u \\
& \Rightarrow t=-x=-u \\
& \Rightarrow u=x \\
& t=-u \\
& \Rightarrow dt=-du \\
& f\left( -x \right)=\int\limits_{0}^{-x}{g\left( t \right)}dt \\
& \Rightarrow f\left( -x \right)=-\int\limits_{0}^{x}{g\left( -u \right)}du \\
\end{align}$
Now, as it is given that $g$ is a non-zero even function, we can write $g\left( -u \right)=g\left( u \right)$. Then,
$\begin{align}
& f\left( -x \right)=-\int\limits_{0}^{x}{g\left( -u \right)}du \\
& \Rightarrow f\left( -x \right)=-\int\limits_{0}^{x}{g\left( u \right)}du \\
\end{align}$
Now, as it is given that $f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt$ so, we can write $\int\limits_{0}^{x}{g\left( u \right)}du=f\left( x \right)$ in the above equation. Then,
$\begin{align}
& f\left( -x \right)=-\int\limits_{0}^{x}{g\left( u \right)}du \\
& \Rightarrow f\left( -x \right)=-f\left( x \right)....................\left( 3 \right) \\
\end{align}$
Now, from the above result, we conclude that $f$ is an odd function.
Now, we will differentiate the $f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt$ with respect to $x$ . Then,
\[\begin{align}
& f\left( x \right)=\int\limits_{0}^{x}{g\left( t \right)}dt \\
& \Rightarrow \dfrac{d\left( f\left( x \right) \right)}{dx}=\dfrac{d\left( \int\limits_{0}^{x}{g\left( t \right)}dt \right)}{dx} \\
& \Rightarrow {f}'\left( x \right)=g\left( x \right)...........................\left( 4 \right) \\
\end{align}\]
Now, as it is given that $f\left( x+5 \right)=g\left( x \right)$ . Then,
\[{f}'\left( x \right)=f\left( x+5 \right)..................\left( 5 \right)\]
Now, we will solve for $\int\limits_{0}^{x}{f\left( t \right)}dt$ . First substitute $t=u+5$ then, the differential $dt$ will change accordingly, upper and lower limits of the integral $\int\limits_{0}^{x}{f\left( t \right)}dt$ will change. And for the upper limit, we will find $u$ when $t=x$ similarly, for the lower limit find $u$ when $t=0$ . Then,
$\begin{align}
& t=u+5 \\
& \Rightarrow t=0=u+5 \\
& \Rightarrow u=-5 \\
& t=u+5 \\
& \Rightarrow t=x=u+5 \\
& \Rightarrow u=x-5 \\
& t=u+5 \\
& \Rightarrow dt=du \\
& \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{-5}^{x-5}{f\left( u+5 \right)}du \\
\end{align}$
Now, from equation (5) we know that \[{f}'\left( x \right)=f\left( x+5 \right)\] so, we can replace $f\left( u+5 \right)={f}'\left( u \right)$ . Then,
$\begin{align}
& \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{-5}^{x-5}{f\left( u+5 \right)}du \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{-5}^{x-5}{{f}'\left( u \right)}du \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=\left[ f\left( u \right) \right]_{-5}^{x-5} \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( x-5 \right)-f\left( -5 \right) \\
\end{align}$
Now, from equation (3) we know that $f\left( -x \right)=-f\left( x \right)$ so, we can write $f\left( x-5 \right)=-f\left( 5-x \right)$ and $f\left( -5 \right)=-f\left( 5 \right)$ in the above equation. Then,
$\begin{align}
& \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( x-5 \right)-f\left( -5 \right) \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=-f\left( 5-x \right)+f\left( 5 \right) \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( 5 \right)-f\left( 5-x \right) \\
\end{align}$
Now, from equation (2) we can write $f\left( 5-x \right)=f\left( x+5 \right)$ in the above equation. Then,
\[\begin{align}
& \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( 5 \right)-f\left( 5-x \right) \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( 5 \right)-f\left( x+5 \right) \\
\end{align}\]
Now, we can write \[f\left( 5 \right)-f\left( x+5 \right)=\int\limits_{5+x}^{5}{{f}'\left( t \right)dt}\] in the above equation. Then,
\[\begin{align}
& \int\limits_{0}^{x}{f\left( t \right)}dt=f\left( 5 \right)-f\left( x+5 \right) \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{5+x}^{5}{{f}'\left( t \right)dt} \\
\end{align}\]
Now, from equation (4) we know that \[{f}'\left( x \right)=g\left( x \right)\] so, we can write \[\int\limits_{5+x}^{5}{{f}'\left( t \right)dt}=\int\limits_{5+x}^{5}{g\left( t \right)dt}\] in the above equation. Then,
\[\begin{align}
& \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{5+x}^{5}{{f}'\left( t \right)dt} \\
& \Rightarrow \int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{5+x}^{5}{g\left( t \right)dt} \\
\end{align}\]
Now, from the above result, we conclude that \[\int\limits_{0}^{x}{f\left( t \right)}dt=\int\limits_{5+x}^{5}{g\left( t \right)dt}\] .
Hence, (a) will be the correct option.
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer. Moreover, we should proceed in a stepwise manner for smooth calculation and make the right substitutions while solving the question. And we should avoid making calculation mistakes while solving.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

