
Let $f\left( x \right) = {x^{\dfrac{3}{2}}} - \sqrt {{x^3} + {x^2}} $, then
1) LHD at $x = 0$ but RHD at $x = 0$ does not exist
2) $f\left( x \right)$ is differentiable at x=0
3) RHD at $x = 0$ exist but LHD at $x = 0$ does not exist
4) $f\left( x \right)$ is differentiable and continuous at $x = 0$
Answer
495.3k+ views
Hint: We are to find the RHD and LHD of the given function by using the fundamental theorem of differentiation, that is,
For $x > a$, RHD $ = \mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{f\left( {a + h} \right) - f(a)}}{h}$
For $x < a$, LHD $ = \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{f\left( {a - h} \right) - f\left( a \right)}}{{ - h}}$
We are to solve these equations, to find the right hand derivative and left hand derivative and observe which of the conditions get satisfied.
Complete step by step answer:
The given function is, $f\left( x \right) = {x^{\dfrac{3}{2}}} - \sqrt {{x^3} + {x^2}} $
Now, we are to find the RHD and LHD at $x = 0$.
Therefore, for $x > 0$, RHD=$\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{f\left( {0 + h} \right) - f(0)}}{h}$
Now, evaluating the function, we get,
RHD$ = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{\left\{ {{{\left( {0 + h} \right)}^{\dfrac{3}{2}}} - \sqrt {{{\left( {0 + h} \right)}^3} + {{\left( {0 + h} \right)}^2}} } \right\} - \left\{ {{{\left( 0 \right)}^{\dfrac{3}{2}}} - \sqrt {{{\left( 0 \right)}^3} + {{\left( 0 \right)}^2}} } \right\}}}{h}$
$ = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{\left( {{h^{\dfrac{3}{2}}} - \sqrt {{h^3} + {h^2}} } \right) - 0}}{h}$
$ = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{{h^{\dfrac{3}{2}}} - h\sqrt {1 + h} }}{h}$
Taking $h$ common from numerator, we get,
$ = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{h\left( {{h^{\dfrac{1}{2}}} - \sqrt {1 + h} } \right)}}{h}$
Cancelling $h$from numerator and denominator, we get,
$ = \mathop {\lim }\limits_{h \to {0^ + }} \left( {{h^{\dfrac{1}{2}}} - \sqrt {1 + h} } \right)$
Now, evaluating the limit, we get,
$ = 0 - \sqrt {1 + 0} $
$ = - 1$
Therefore, RHD exists at $x = 0$ and it’s value is $ - 1$.
Now, for $x < 0$, LHD=$\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{f\left( {0 - h} \right) - f(0)}}{{ - h}}$
Now, evaluating the function, we get,
LHD$ = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{\left\{ {{{\left( {0 - h} \right)}^{\dfrac{3}{2}}} - \sqrt {{{\left( {0 - h} \right)}^3} + {{\left( {0 - h} \right)}^2}} } \right\} - \left\{ {{{\left( 0 \right)}^{\dfrac{3}{2}}} - \sqrt {{{\left( 0 \right)}^3} + {{\left( 0 \right)}^2}} } \right\}}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{\left\{ {{{\left( { - h} \right)}^{\dfrac{3}{2}}} - \sqrt {{{\left( { - h} \right)}^3} + {{\left( { - h} \right)}^2}} } \right\} - \left\{ 0 \right\}}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{ - {h^{\dfrac{3}{2}}} - \sqrt { - {h^3} + {h^2}} }}{{ - h}}$
Taking $h$ common from the root, we get,
$ = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{ - {h^{\dfrac{3}{2}}} - h\sqrt { - h + 1} }}{{ - h}}$
Now, taking $ - h$ common from the numerator, we get,
$ = \mathop {\lim }\limits_{h \to {0^ - }} {h^{\dfrac{1}{2}}} + \sqrt {1 - h} $
Here, $h \to {0^ - }$, i.e., $h < 0$, so $\sqrt h $ will not exist, as it can’t be negative inside the root.
So, LHD doesn’t exist.
So, RHD exists at $x = 0$, but LHD does not exist at $x = 0$.
Therefore, the option (3) is correct.
Note:
> If both the RHD and LHD of a function exists, then the function is said to be differentiable at the given point. But if any one of the LHD or RHD doesn’t exist, then the function is not differentiable at that given point. This fundamental theorem is the basis of the origin of the formulas of differentiation.
> If a function is differentiable, then that function must be continuous but the converse does not hold. That means, if a function is continuous, it might not always be differentiable.
For $x > a$, RHD $ = \mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{f\left( {a + h} \right) - f(a)}}{h}$
For $x < a$, LHD $ = \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{f\left( {a - h} \right) - f\left( a \right)}}{{ - h}}$
We are to solve these equations, to find the right hand derivative and left hand derivative and observe which of the conditions get satisfied.
Complete step by step answer:
The given function is, $f\left( x \right) = {x^{\dfrac{3}{2}}} - \sqrt {{x^3} + {x^2}} $
Now, we are to find the RHD and LHD at $x = 0$.
Therefore, for $x > 0$, RHD=$\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{f\left( {0 + h} \right) - f(0)}}{h}$
Now, evaluating the function, we get,
RHD$ = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{\left\{ {{{\left( {0 + h} \right)}^{\dfrac{3}{2}}} - \sqrt {{{\left( {0 + h} \right)}^3} + {{\left( {0 + h} \right)}^2}} } \right\} - \left\{ {{{\left( 0 \right)}^{\dfrac{3}{2}}} - \sqrt {{{\left( 0 \right)}^3} + {{\left( 0 \right)}^2}} } \right\}}}{h}$
$ = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{\left( {{h^{\dfrac{3}{2}}} - \sqrt {{h^3} + {h^2}} } \right) - 0}}{h}$
$ = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{{h^{\dfrac{3}{2}}} - h\sqrt {1 + h} }}{h}$
Taking $h$ common from numerator, we get,
$ = \mathop {\lim }\limits_{h \to {0^ + }} \dfrac{{h\left( {{h^{\dfrac{1}{2}}} - \sqrt {1 + h} } \right)}}{h}$
Cancelling $h$from numerator and denominator, we get,
$ = \mathop {\lim }\limits_{h \to {0^ + }} \left( {{h^{\dfrac{1}{2}}} - \sqrt {1 + h} } \right)$
Now, evaluating the limit, we get,
$ = 0 - \sqrt {1 + 0} $
$ = - 1$
Therefore, RHD exists at $x = 0$ and it’s value is $ - 1$.
Now, for $x < 0$, LHD=$\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{f\left( {0 - h} \right) - f(0)}}{{ - h}}$
Now, evaluating the function, we get,
LHD$ = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{\left\{ {{{\left( {0 - h} \right)}^{\dfrac{3}{2}}} - \sqrt {{{\left( {0 - h} \right)}^3} + {{\left( {0 - h} \right)}^2}} } \right\} - \left\{ {{{\left( 0 \right)}^{\dfrac{3}{2}}} - \sqrt {{{\left( 0 \right)}^3} + {{\left( 0 \right)}^2}} } \right\}}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{\left\{ {{{\left( { - h} \right)}^{\dfrac{3}{2}}} - \sqrt {{{\left( { - h} \right)}^3} + {{\left( { - h} \right)}^2}} } \right\} - \left\{ 0 \right\}}}{{ - h}}$
$ = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{ - {h^{\dfrac{3}{2}}} - \sqrt { - {h^3} + {h^2}} }}{{ - h}}$
Taking $h$ common from the root, we get,
$ = \mathop {\lim }\limits_{h \to {0^ - }} \dfrac{{ - {h^{\dfrac{3}{2}}} - h\sqrt { - h + 1} }}{{ - h}}$
Now, taking $ - h$ common from the numerator, we get,
$ = \mathop {\lim }\limits_{h \to {0^ - }} {h^{\dfrac{1}{2}}} + \sqrt {1 - h} $
Here, $h \to {0^ - }$, i.e., $h < 0$, so $\sqrt h $ will not exist, as it can’t be negative inside the root.
So, LHD doesn’t exist.
So, RHD exists at $x = 0$, but LHD does not exist at $x = 0$.
Therefore, the option (3) is correct.
Note:
> If both the RHD and LHD of a function exists, then the function is said to be differentiable at the given point. But if any one of the LHD or RHD doesn’t exist, then the function is not differentiable at that given point. This fundamental theorem is the basis of the origin of the formulas of differentiation.
> If a function is differentiable, then that function must be continuous but the converse does not hold. That means, if a function is continuous, it might not always be differentiable.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

