
Let \[f\left( \beta \right) = \mathop {\lim }\limits_{\alpha \to \beta } \dfrac{{{{\sin }^2}\alpha - {{\sin }^2}\beta }}{{{\alpha ^2} - {\beta ^2}}}\] , then \[f\left( {\dfrac{\pi }{4}} \right)\] is greater than-
A. \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{1 - {{\cos }^3}x}}{{x\sin 2x}}\]
B. \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{\cot x - \cos x}}{{{{\left( {\pi - 2x} \right)}^3}}}\]
C. \[\mathop {\lim }\limits_{x \to \infty } \left( {\cos \sqrt {x + 1} - \cos \sqrt x } \right)\]
D. \[\mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x} - \sqrt {3x} }}{{\sqrt {3a + x} - 2\sqrt x }}\] where \[a > 0\]
Answer
534k+ views
Hint: To solve the question given above, we will be using the L’hospital rule. This rule is used to perform differentiation in limits. According to L’hospital rule, \[\mathop {\lim }\limits_{x \to \alpha } \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to \alpha } \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\] . To solve the above question and questions similar to it, this rule is the most important. You also need to remember the differentiation of trigonometric functions.
Formula used:
L’hospital rule, \[\mathop {\lim }\limits_{x \to \alpha } \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to \alpha } \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\] .
\[\left( {\cos a - \cos b = - 2\sin \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}} \right)\]
Complete step by step solution:
We are given: \[f\left( \beta \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\sin }^2}\alpha - {{\sin }^2}\beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we can see that this limit is of \[\dfrac{0}{0}\] form. So, to solve this question, we will use the L’hospital rule.
According to L’hospital rule, \[\mathop {\lim }\limits_{x \to \alpha } \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to \alpha } \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\] . Using this, we get,
\[\mathop {\lim }\limits_{\alpha \to \beta } \dfrac{{2\sin \alpha \cos \alpha - 0}}{{2\alpha - 0}}\]
\[ \Rightarrow \mathop {\lim }\limits_{\alpha \to \beta } \dfrac{{\sin \alpha \cos \alpha }}{\alpha }\] .
On solving the limit, we get: \[\dfrac{{\sin \beta \cos \beta }}{\beta }\]
Now, we have to find the value of \[f\left( {\dfrac{\pi }{4}} \right)\] .
Put \[\beta = \dfrac{\pi }{4}\] ,
\[\dfrac{{\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{4}}}{{\dfrac{\pi }{4}}}\] ,
In the next step we will equate the values \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] and \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] .
We get,
\[
\dfrac{{\dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }}}}{{\dfrac{\pi }{4}}} \\
\Rightarrow \dfrac{1}{2} \times \dfrac{4}{\pi } \\
\]
\[ \Rightarrow \dfrac{2}{\pi }\] .
Now, we have to find the option from which this value will be greater.
First, we will find the exact value of \[\dfrac{2}{\pi }\] . We get, \[\dfrac{2}{\pi } = 0.636\] .
Now, we will check for the first option.
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{1 - {{\cos }^3}x}}{{x\sin 2x}}\]
This is again of \[\dfrac{0}{0}\] form. So, we will apply L’hospital rule.
We get,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{3{{\cos }^2}x\sin x}}{{2x\cos 2x + \sin 2x}}\]
This is again of \[\dfrac{0}{0}\] form. So, we will again apply the L'hospital rule.
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{3{{\cos }^2}x\cos x + 6{{\cos }^2}x\left( { - \sin x} \right)}}{{2\cos 2x + 2\cos 2x - \left( {4\sin 2x} \right)x}}\]
On evaluating the limit, we get,
\[
\dfrac{3}{{2 + 2}} \\
\Rightarrow \dfrac{3}{4} \\
\Rightarrow 0.75 \\
\] .
Now this value is greater than \[f\left( {\dfrac{\pi }{4}} \right)\] .
So, this option is incorrect.
Now, we will check for option B. \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{\cot x - \cos x}}{{{{\left( {\pi - 2x} \right)}^3}}}\] which is of the form \[\dfrac{0}{0}\] . so, we will differentiate using L’hospital rule.
\[\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - \cos e{c^2}x + \sin x}}{{3{{\left( {\pi - 2x} \right)}^2}\left( { - 2} \right)}}\]
It is of again \[\dfrac{0}{0}\] form.
Using L’hospital rule,
\[
\dfrac{1}{6}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{2\cos ecx\left( { - \cos ecx\cot x} \right) + \cos x}}{{2\left( {\pi - 2x} \right)\left( { - 2} \right)}} \\
\Rightarrow \dfrac{1}{{ - 24}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - 2\cos e{c^2}x\cot x + \cos x}}{{\left( {\pi - 2x} \right)}} \\
\]
It is of again \[\dfrac{0}{0}\] form. Therefore, using L’hospital rule, we get,
\[\dfrac{1}{{ - 24}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - 2\left( {2\cos ecx\left( { - \cos ecx\cot x} \right) + \left( { - \cos e{c^2}x} \right)\left( {\cos e{c^2}x} \right) - \sin x} \right)}}{{ - 2}}\]
On evaluating the limit, we get,
\[
\dfrac{{ - 1}}{{24}} \times \dfrac{1}{2} \\
\Rightarrow \dfrac{{ - 1}}{{48}} \\
\] .
This value is less than \[f\left( {\dfrac{\pi }{4}} \right)\] . So, this option is correct.
Now we will check for option C. \[\mathop {\lim }\limits_{x \to \infty } \left( {\cos \sqrt {x + 1} - \cos \sqrt x } \right)\] ,
\[\mathop {\lim }\limits_{x \to \infty } \left( { - 2\sin \left( {\dfrac{{\sqrt {x + 1} + \sqrt x }}{2}} \right)\sin \left( {\dfrac{{\sqrt {x + 1} - \sqrt x }}{2}} \right)} \right)\] by using \[\left( {\cos a - \cos b = - 2\sin \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}} \right)\] .
Now we will rationalize the equation,
\[\mathop {\lim }\limits_{x \to \infty } \left( { - 2\sin \left( {\dfrac{{\sqrt {x + 1} + \sqrt x }}{2} \times \dfrac{{\sqrt {x + 1} - \sqrt x }}{{\sqrt {x + 1} - \sqrt x }}} \right)\sin \left( {\dfrac{{\sqrt {x + 1} - \sqrt x }}{2} \times \dfrac{{\sqrt {x + 1} + \sqrt x }}{{\sqrt {x + 1} + \sqrt x }}} \right)} \right)\]
After rationalizing we get,
\[\mathop {\lim }\limits_{x \to \infty } \left( { - 2\sin \left( {\dfrac{{x + 1 - x}}{{2\left( {\sqrt {x + 1} - \sqrt x } \right)}}} \right)\sin \left( {\dfrac{{x + 1 - x}}{{2\sqrt {x + 1} + \sqrt x }}} \right)} \right)\]
On evaluating the limit, we get the answer \[0\] .
So, \[f\left( {\dfrac{\pi }{4}} \right)\] is greater than \[0\] . so, this option is also correct.
Now, we will check option D. \[\mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x} - \sqrt {3x} }}{{\sqrt {3a + x} - 2\sqrt x }}\] .
It is of the form \[\dfrac{0}{0}\] . so, we will differentiate using L’hospital rule.
\[\mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x} - \sqrt {3x} }}{{\sqrt {3a + x} - 2\sqrt x }}\] .
It is of again \[\dfrac{0}{0}\] form. Therefore, using L’hospital rule, we get,
\[\mathop {\lim }\limits_{x \to a} \dfrac{{\dfrac{1}{2}\dfrac{2}{{\sqrt {a + 2x} }} - \dfrac{1}{2}\dfrac{3}{{\sqrt {3x} }}}}{{\dfrac{1}{{2\sqrt {3a + x} }} - \dfrac{2}{{2\sqrt x }}}}\]
On evaluating the limit, we get,
\[
\Rightarrow \dfrac{1}{{\sqrt 3 }}\dfrac{{\dfrac{{ - 1}}{2}}}{{\dfrac{{ - 3}}{4}}} \\
\Rightarrow \dfrac{1}{{\sqrt 3 }}\dfrac{2}{3} \\
\Rightarrow \dfrac{2}{{3\sqrt 3 }} \\
\] .
Now its value is \[0.384\] .
\[f\left( {\dfrac{\pi }{4}} \right)\] is greater than \[0.384\] . So, this option is correct.
So, the final answer: \[f\left( {\dfrac{\pi }{4}} \right)\] is greater than B. \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{\cot x - \cos x}}{{{{\left( {\pi - 2x} \right)}^3}}}\] , C. \[\mathop {\lim }\limits_{x \to \infty } \left( {\cos \sqrt {x + 1} - \cos \sqrt x } \right)\] and D. \[\mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x} - \sqrt {3x} }}{{\sqrt {3a + x} - 2\sqrt x }}\] .
Note: To solve questions similar to the above one, you need to remember the L’hospital rule, which is, \[\mathop {\lim }\limits_{x \to \alpha } \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to \alpha } \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\] . You also need to remember the trigonometric differentiation. Without them the question cannot be solved. Solve the question step by step, checking the answer for each option one by one.
Formula used:
L’hospital rule, \[\mathop {\lim }\limits_{x \to \alpha } \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to \alpha } \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\] .
\[\left( {\cos a - \cos b = - 2\sin \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}} \right)\]
Complete step by step solution:
We are given: \[f\left( \beta \right) = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{{\sin }^2}\alpha - {{\sin }^2}\beta }}{{{\alpha ^2} - {\beta ^2}}}\]
Now we can see that this limit is of \[\dfrac{0}{0}\] form. So, to solve this question, we will use the L’hospital rule.
According to L’hospital rule, \[\mathop {\lim }\limits_{x \to \alpha } \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to \alpha } \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\] . Using this, we get,
\[\mathop {\lim }\limits_{\alpha \to \beta } \dfrac{{2\sin \alpha \cos \alpha - 0}}{{2\alpha - 0}}\]
\[ \Rightarrow \mathop {\lim }\limits_{\alpha \to \beta } \dfrac{{\sin \alpha \cos \alpha }}{\alpha }\] .
On solving the limit, we get: \[\dfrac{{\sin \beta \cos \beta }}{\beta }\]
Now, we have to find the value of \[f\left( {\dfrac{\pi }{4}} \right)\] .
Put \[\beta = \dfrac{\pi }{4}\] ,
\[\dfrac{{\sin \dfrac{\pi }{4}\cos \dfrac{\pi }{4}}}{{\dfrac{\pi }{4}}}\] ,
In the next step we will equate the values \[\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] and \[\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\] .
We get,
\[
\dfrac{{\dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{{\sqrt 2 }}}}{{\dfrac{\pi }{4}}} \\
\Rightarrow \dfrac{1}{2} \times \dfrac{4}{\pi } \\
\]
\[ \Rightarrow \dfrac{2}{\pi }\] .
Now, we have to find the option from which this value will be greater.
First, we will find the exact value of \[\dfrac{2}{\pi }\] . We get, \[\dfrac{2}{\pi } = 0.636\] .
Now, we will check for the first option.
\[\mathop {\lim }\limits_{x \to \infty } \dfrac{{1 - {{\cos }^3}x}}{{x\sin 2x}}\]
This is again of \[\dfrac{0}{0}\] form. So, we will apply L’hospital rule.
We get,
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{3{{\cos }^2}x\sin x}}{{2x\cos 2x + \sin 2x}}\]
This is again of \[\dfrac{0}{0}\] form. So, we will again apply the L'hospital rule.
\[\mathop {\lim }\limits_{x \to 0} \dfrac{{3{{\cos }^2}x\cos x + 6{{\cos }^2}x\left( { - \sin x} \right)}}{{2\cos 2x + 2\cos 2x - \left( {4\sin 2x} \right)x}}\]
On evaluating the limit, we get,
\[
\dfrac{3}{{2 + 2}} \\
\Rightarrow \dfrac{3}{4} \\
\Rightarrow 0.75 \\
\] .
Now this value is greater than \[f\left( {\dfrac{\pi }{4}} \right)\] .
So, this option is incorrect.
Now, we will check for option B. \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{\cot x - \cos x}}{{{{\left( {\pi - 2x} \right)}^3}}}\] which is of the form \[\dfrac{0}{0}\] . so, we will differentiate using L’hospital rule.
\[\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - \cos e{c^2}x + \sin x}}{{3{{\left( {\pi - 2x} \right)}^2}\left( { - 2} \right)}}\]
It is of again \[\dfrac{0}{0}\] form.
Using L’hospital rule,
\[
\dfrac{1}{6}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{2\cos ecx\left( { - \cos ecx\cot x} \right) + \cos x}}{{2\left( {\pi - 2x} \right)\left( { - 2} \right)}} \\
\Rightarrow \dfrac{1}{{ - 24}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - 2\cos e{c^2}x\cot x + \cos x}}{{\left( {\pi - 2x} \right)}} \\
\]
It is of again \[\dfrac{0}{0}\] form. Therefore, using L’hospital rule, we get,
\[\dfrac{1}{{ - 24}}\mathop {\lim }\limits_{x \to \dfrac{\pi }{2}} \dfrac{{ - 2\left( {2\cos ecx\left( { - \cos ecx\cot x} \right) + \left( { - \cos e{c^2}x} \right)\left( {\cos e{c^2}x} \right) - \sin x} \right)}}{{ - 2}}\]
On evaluating the limit, we get,
\[
\dfrac{{ - 1}}{{24}} \times \dfrac{1}{2} \\
\Rightarrow \dfrac{{ - 1}}{{48}} \\
\] .
This value is less than \[f\left( {\dfrac{\pi }{4}} \right)\] . So, this option is correct.
Now we will check for option C. \[\mathop {\lim }\limits_{x \to \infty } \left( {\cos \sqrt {x + 1} - \cos \sqrt x } \right)\] ,
\[\mathop {\lim }\limits_{x \to \infty } \left( { - 2\sin \left( {\dfrac{{\sqrt {x + 1} + \sqrt x }}{2}} \right)\sin \left( {\dfrac{{\sqrt {x + 1} - \sqrt x }}{2}} \right)} \right)\] by using \[\left( {\cos a - \cos b = - 2\sin \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}} \right)\] .
Now we will rationalize the equation,
\[\mathop {\lim }\limits_{x \to \infty } \left( { - 2\sin \left( {\dfrac{{\sqrt {x + 1} + \sqrt x }}{2} \times \dfrac{{\sqrt {x + 1} - \sqrt x }}{{\sqrt {x + 1} - \sqrt x }}} \right)\sin \left( {\dfrac{{\sqrt {x + 1} - \sqrt x }}{2} \times \dfrac{{\sqrt {x + 1} + \sqrt x }}{{\sqrt {x + 1} + \sqrt x }}} \right)} \right)\]
After rationalizing we get,
\[\mathop {\lim }\limits_{x \to \infty } \left( { - 2\sin \left( {\dfrac{{x + 1 - x}}{{2\left( {\sqrt {x + 1} - \sqrt x } \right)}}} \right)\sin \left( {\dfrac{{x + 1 - x}}{{2\sqrt {x + 1} + \sqrt x }}} \right)} \right)\]
On evaluating the limit, we get the answer \[0\] .
So, \[f\left( {\dfrac{\pi }{4}} \right)\] is greater than \[0\] . so, this option is also correct.
Now, we will check option D. \[\mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x} - \sqrt {3x} }}{{\sqrt {3a + x} - 2\sqrt x }}\] .
It is of the form \[\dfrac{0}{0}\] . so, we will differentiate using L’hospital rule.
\[\mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x} - \sqrt {3x} }}{{\sqrt {3a + x} - 2\sqrt x }}\] .
It is of again \[\dfrac{0}{0}\] form. Therefore, using L’hospital rule, we get,
\[\mathop {\lim }\limits_{x \to a} \dfrac{{\dfrac{1}{2}\dfrac{2}{{\sqrt {a + 2x} }} - \dfrac{1}{2}\dfrac{3}{{\sqrt {3x} }}}}{{\dfrac{1}{{2\sqrt {3a + x} }} - \dfrac{2}{{2\sqrt x }}}}\]
On evaluating the limit, we get,
\[
\Rightarrow \dfrac{1}{{\sqrt 3 }}\dfrac{{\dfrac{{ - 1}}{2}}}{{\dfrac{{ - 3}}{4}}} \\
\Rightarrow \dfrac{1}{{\sqrt 3 }}\dfrac{2}{3} \\
\Rightarrow \dfrac{2}{{3\sqrt 3 }} \\
\] .
Now its value is \[0.384\] .
\[f\left( {\dfrac{\pi }{4}} \right)\] is greater than \[0.384\] . So, this option is correct.
So, the final answer: \[f\left( {\dfrac{\pi }{4}} \right)\] is greater than B. \[\mathop {\lim }\limits_{x \to \infty } \dfrac{{\cot x - \cos x}}{{{{\left( {\pi - 2x} \right)}^3}}}\] , C. \[\mathop {\lim }\limits_{x \to \infty } \left( {\cos \sqrt {x + 1} - \cos \sqrt x } \right)\] and D. \[\mathop {\lim }\limits_{x \to a} \dfrac{{\sqrt {a + 2x} - \sqrt {3x} }}{{\sqrt {3a + x} - 2\sqrt x }}\] .
Note: To solve questions similar to the above one, you need to remember the L’hospital rule, which is, \[\mathop {\lim }\limits_{x \to \alpha } \dfrac{{f\left( x \right)}}{{g\left( x \right)}} = \mathop {\lim }\limits_{x \to \alpha } \dfrac{{f'\left( x \right)}}{{g'\left( x \right)}}\] . You also need to remember the trigonometric differentiation. Without them the question cannot be solved. Solve the question step by step, checking the answer for each option one by one.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

