
Let $f:\left[ -1,2 \right]\to \left[ 0,\infty \right)$ be a continuous function such that $f\left( x \right)=f\left( 1-x \right)$ for all $x\in \left[ -1,2 \right]$. Let ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$ and ${{R}_{2}}$ be the area of the region bounded by $y=f\left( x \right)$, $x=-1$, $x=2$ and the X-axis. Then
A. ${{R}_{1}}=2{{R}_{2}}$
B. ${{R}_{1}}=3{{R}_{2}}$
C. $2{{R}_{1}}={{R}_{2}}$
D. $3{{R}_{1}}={{R}_{2}}$
Answer
543.6k+ views
Hint: We try to form the integration for the area of ${{R}_{2}}$. Then we change the variable for the function ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$. We use different theorems of definite integral like $\int\limits_{a}^{b}{f\left( x \right)dx}=-\int\limits_{b}^{a}{f\left( x \right)dx}$ and $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}$. We change the function using $f\left( x \right)=f\left( 1-x \right)$ and find the relation between the ${{R}_{1}}$ and ${{R}_{2}}$.
Complete step by step solution:
It is given that ${{R}_{2}}$ be the area of the region bounded by $y=f\left( x \right)$, $x=-1$, $x=2$ and the X-axis. We can express it in the form of integration of area under the curve.
So, ${{R}_{2}}=\int\limits_{-1}^{2}{f\left( x \right)dx}$.
It’s also given that ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$.
We need to find the relation between the ${{R}_{1}}$ and ${{R}_{2}}$.
We now change the variable of the integration ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$ with the relation where $x=1-z$.
We take partial differentiation of the relation $x=1-z$. So, $dx=-dz$.
The upper and lower limit changes with the relation
Now we replace the values to get ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}=\int\limits_{2}^{-1}{\left( 1-z \right)f\left( 1-z \right)\left( -dz \right)}$.
We now use the theorems of definite integral where $\int\limits_{a}^{b}{f\left( x \right)dx}=-\int\limits_{b}^{a}{f\left( x \right)dx}$ and $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}$.
Therefore, ${{R}_{1}}=\int\limits_{2}^{-1}{\left( 1-z \right)f\left( 1-z \right)\left( -dz \right)}=\int\limits_{-1}^{2}{\left( 1-z \right)f\left( 1-z \right)dz}$.
Now we break the functions as ${{R}_{1}}=\int\limits_{-1}^{2}{\left( 1-z \right)f\left( 1-z \right)dz}=\int\limits_{-1}^{2}{f\left( 1-z \right)dz}-\int\limits_{-1}^{2}{zf\left( 1-z \right)dz}$.
We use the theorem $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}$.
So, ${{R}_{1}}=\int\limits_{-1}^{2}{f\left( 1-z \right)dz}-\int\limits_{-1}^{2}{zf\left( 1-z \right)dz}=\int\limits_{-1}^{2}{f\left( 1-x \right)dx}-\int\limits_{-1}^{2}{xf\left( 1-x \right)dx}$.
It’s also given that $f\left( x \right)=f\left( 1-x \right)$ which gives
${{R}_{1}}=\int\limits_{-1}^{2}{f\left( 1-x \right)dx}-\int\limits_{-1}^{2}{xf\left( 1-x \right)dx}=\int\limits_{-1}^{2}{f\left( x \right)dx}-\int\limits_{-1}^{2}{xf\left( x \right)dx}$
We replace the values with ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$ and ${{R}_{2}}=\int\limits_{-1}^{2}{f\left( x \right)dx}$.
${{R}_{1}}=\int\limits_{-1}^{2}{f\left( x \right)dx}-\int\limits_{-1}^{2}{xf\left( x \right)dx}={{R}_{2}}-{{R}_{1}}$.
Simplifying we get $2{{R}_{1}}={{R}_{2}}$. The correct option is C.
Note: We need to remember that the transformation from ${{R}_{1}}$ to ${{R}_{2}}$ can also be done inversely. The relation between the variables will remain the same. If a function is strictly positive, the area between it and the X-axis is simply the definite integral.
Complete step by step solution:
It is given that ${{R}_{2}}$ be the area of the region bounded by $y=f\left( x \right)$, $x=-1$, $x=2$ and the X-axis. We can express it in the form of integration of area under the curve.
So, ${{R}_{2}}=\int\limits_{-1}^{2}{f\left( x \right)dx}$.
It’s also given that ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$.
We need to find the relation between the ${{R}_{1}}$ and ${{R}_{2}}$.
We now change the variable of the integration ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$ with the relation where $x=1-z$.
We take partial differentiation of the relation $x=1-z$. So, $dx=-dz$.
The upper and lower limit changes with the relation
| x | -1 | 2 |
| $z=1-x$ | 2 | -1 |
Now we replace the values to get ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}=\int\limits_{2}^{-1}{\left( 1-z \right)f\left( 1-z \right)\left( -dz \right)}$.
We now use the theorems of definite integral where $\int\limits_{a}^{b}{f\left( x \right)dx}=-\int\limits_{b}^{a}{f\left( x \right)dx}$ and $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}$.
Therefore, ${{R}_{1}}=\int\limits_{2}^{-1}{\left( 1-z \right)f\left( 1-z \right)\left( -dz \right)}=\int\limits_{-1}^{2}{\left( 1-z \right)f\left( 1-z \right)dz}$.
Now we break the functions as ${{R}_{1}}=\int\limits_{-1}^{2}{\left( 1-z \right)f\left( 1-z \right)dz}=\int\limits_{-1}^{2}{f\left( 1-z \right)dz}-\int\limits_{-1}^{2}{zf\left( 1-z \right)dz}$.
We use the theorem $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}$.
So, ${{R}_{1}}=\int\limits_{-1}^{2}{f\left( 1-z \right)dz}-\int\limits_{-1}^{2}{zf\left( 1-z \right)dz}=\int\limits_{-1}^{2}{f\left( 1-x \right)dx}-\int\limits_{-1}^{2}{xf\left( 1-x \right)dx}$.
It’s also given that $f\left( x \right)=f\left( 1-x \right)$ which gives
${{R}_{1}}=\int\limits_{-1}^{2}{f\left( 1-x \right)dx}-\int\limits_{-1}^{2}{xf\left( 1-x \right)dx}=\int\limits_{-1}^{2}{f\left( x \right)dx}-\int\limits_{-1}^{2}{xf\left( x \right)dx}$
We replace the values with ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$ and ${{R}_{2}}=\int\limits_{-1}^{2}{f\left( x \right)dx}$.
${{R}_{1}}=\int\limits_{-1}^{2}{f\left( x \right)dx}-\int\limits_{-1}^{2}{xf\left( x \right)dx}={{R}_{2}}-{{R}_{1}}$.
Simplifying we get $2{{R}_{1}}={{R}_{2}}$. The correct option is C.
Note: We need to remember that the transformation from ${{R}_{1}}$ to ${{R}_{2}}$ can also be done inversely. The relation between the variables will remain the same. If a function is strictly positive, the area between it and the X-axis is simply the definite integral.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

