
Let $f:\left[ -1,2 \right]\to \left[ 0,\infty \right)$ be a continuous function such that $f\left( x \right)=f\left( 1-x \right)$ for all $x\in \left[ -1,2 \right]$. Let ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$ and ${{R}_{2}}$ be the area of the region bounded by $y=f\left( x \right)$, $x=-1$, $x=2$ and the X-axis. Then
A. ${{R}_{1}}=2{{R}_{2}}$
B. ${{R}_{1}}=3{{R}_{2}}$
C. $2{{R}_{1}}={{R}_{2}}$
D. $3{{R}_{1}}={{R}_{2}}$
Answer
448.2k+ views
Hint: We try to form the integration for the area of ${{R}_{2}}$. Then we change the variable for the function ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$. We use different theorems of definite integral like $\int\limits_{a}^{b}{f\left( x \right)dx}=-\int\limits_{b}^{a}{f\left( x \right)dx}$ and $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}$. We change the function using $f\left( x \right)=f\left( 1-x \right)$ and find the relation between the ${{R}_{1}}$ and ${{R}_{2}}$.
Complete step by step solution:
It is given that ${{R}_{2}}$ be the area of the region bounded by $y=f\left( x \right)$, $x=-1$, $x=2$ and the X-axis. We can express it in the form of integration of area under the curve.
So, ${{R}_{2}}=\int\limits_{-1}^{2}{f\left( x \right)dx}$.
It’s also given that ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$.
We need to find the relation between the ${{R}_{1}}$ and ${{R}_{2}}$.
We now change the variable of the integration ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$ with the relation where $x=1-z$.
We take partial differentiation of the relation $x=1-z$. So, $dx=-dz$.
The upper and lower limit changes with the relation
Now we replace the values to get ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}=\int\limits_{2}^{-1}{\left( 1-z \right)f\left( 1-z \right)\left( -dz \right)}$.
We now use the theorems of definite integral where $\int\limits_{a}^{b}{f\left( x \right)dx}=-\int\limits_{b}^{a}{f\left( x \right)dx}$ and $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}$.
Therefore, ${{R}_{1}}=\int\limits_{2}^{-1}{\left( 1-z \right)f\left( 1-z \right)\left( -dz \right)}=\int\limits_{-1}^{2}{\left( 1-z \right)f\left( 1-z \right)dz}$.
Now we break the functions as ${{R}_{1}}=\int\limits_{-1}^{2}{\left( 1-z \right)f\left( 1-z \right)dz}=\int\limits_{-1}^{2}{f\left( 1-z \right)dz}-\int\limits_{-1}^{2}{zf\left( 1-z \right)dz}$.
We use the theorem $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}$.
So, ${{R}_{1}}=\int\limits_{-1}^{2}{f\left( 1-z \right)dz}-\int\limits_{-1}^{2}{zf\left( 1-z \right)dz}=\int\limits_{-1}^{2}{f\left( 1-x \right)dx}-\int\limits_{-1}^{2}{xf\left( 1-x \right)dx}$.
It’s also given that $f\left( x \right)=f\left( 1-x \right)$ which gives
${{R}_{1}}=\int\limits_{-1}^{2}{f\left( 1-x \right)dx}-\int\limits_{-1}^{2}{xf\left( 1-x \right)dx}=\int\limits_{-1}^{2}{f\left( x \right)dx}-\int\limits_{-1}^{2}{xf\left( x \right)dx}$
We replace the values with ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$ and ${{R}_{2}}=\int\limits_{-1}^{2}{f\left( x \right)dx}$.
${{R}_{1}}=\int\limits_{-1}^{2}{f\left( x \right)dx}-\int\limits_{-1}^{2}{xf\left( x \right)dx}={{R}_{2}}-{{R}_{1}}$.
Simplifying we get $2{{R}_{1}}={{R}_{2}}$. The correct option is C.
Note: We need to remember that the transformation from ${{R}_{1}}$ to ${{R}_{2}}$ can also be done inversely. The relation between the variables will remain the same. If a function is strictly positive, the area between it and the X-axis is simply the definite integral.
Complete step by step solution:
It is given that ${{R}_{2}}$ be the area of the region bounded by $y=f\left( x \right)$, $x=-1$, $x=2$ and the X-axis. We can express it in the form of integration of area under the curve.
So, ${{R}_{2}}=\int\limits_{-1}^{2}{f\left( x \right)dx}$.
It’s also given that ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$.
We need to find the relation between the ${{R}_{1}}$ and ${{R}_{2}}$.
We now change the variable of the integration ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$ with the relation where $x=1-z$.
We take partial differentiation of the relation $x=1-z$. So, $dx=-dz$.
The upper and lower limit changes with the relation
x | -1 | 2 |
$z=1-x$ | 2 | -1 |
Now we replace the values to get ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}=\int\limits_{2}^{-1}{\left( 1-z \right)f\left( 1-z \right)\left( -dz \right)}$.
We now use the theorems of definite integral where $\int\limits_{a}^{b}{f\left( x \right)dx}=-\int\limits_{b}^{a}{f\left( x \right)dx}$ and $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}$.
Therefore, ${{R}_{1}}=\int\limits_{2}^{-1}{\left( 1-z \right)f\left( 1-z \right)\left( -dz \right)}=\int\limits_{-1}^{2}{\left( 1-z \right)f\left( 1-z \right)dz}$.
Now we break the functions as ${{R}_{1}}=\int\limits_{-1}^{2}{\left( 1-z \right)f\left( 1-z \right)dz}=\int\limits_{-1}^{2}{f\left( 1-z \right)dz}-\int\limits_{-1}^{2}{zf\left( 1-z \right)dz}$.
We use the theorem $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( z \right)dz}$.
So, ${{R}_{1}}=\int\limits_{-1}^{2}{f\left( 1-z \right)dz}-\int\limits_{-1}^{2}{zf\left( 1-z \right)dz}=\int\limits_{-1}^{2}{f\left( 1-x \right)dx}-\int\limits_{-1}^{2}{xf\left( 1-x \right)dx}$.
It’s also given that $f\left( x \right)=f\left( 1-x \right)$ which gives
${{R}_{1}}=\int\limits_{-1}^{2}{f\left( 1-x \right)dx}-\int\limits_{-1}^{2}{xf\left( 1-x \right)dx}=\int\limits_{-1}^{2}{f\left( x \right)dx}-\int\limits_{-1}^{2}{xf\left( x \right)dx}$
We replace the values with ${{R}_{1}}=\int\limits_{-1}^{2}{xf\left( x \right)dx}$ and ${{R}_{2}}=\int\limits_{-1}^{2}{f\left( x \right)dx}$.
${{R}_{1}}=\int\limits_{-1}^{2}{f\left( x \right)dx}-\int\limits_{-1}^{2}{xf\left( x \right)dx}={{R}_{2}}-{{R}_{1}}$.
Simplifying we get $2{{R}_{1}}={{R}_{2}}$. The correct option is C.
Note: We need to remember that the transformation from ${{R}_{1}}$ to ${{R}_{2}}$ can also be done inversely. The relation between the variables will remain the same. If a function is strictly positive, the area between it and the X-axis is simply the definite integral.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
