
Let \[f,g:R \to R\]be two functions defined by \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{x\sin \left( {\dfrac{1}{x}} \right)}&{{\text{if }}x \ne 0} \\
{0,}&{{\text{ if }}x = 0}
\end{array}} \right.\]
and \[g\left( x \right) = xf\left( x \right)\]
Statement I : f is a continuous function at x=0
Statement II : g is a differentiable function at x=0
A) Both statements I and II are false.
B) Both statements I and II are true.
C) Statement I is true, statement II is false.
D) Statement I is false, statement II is true.
Answer
581.1k+ views
Hint: Here first we will check the continuity of the given function at \[x = 0\].
For the given function to be continuous\[f\left( {{0^ - }} \right) = f\left( {{0^ + }} \right) = f\left( 0 \right)\]. Then we will check for the differentiability of the given function by evaluating \[f'\left( x \right)\] and then find its limit at \[x = 0\]. If the limit exists then it is differentiable and if the limit does not exist then it is not differentiable.
Complete step-by-step answer:
The given function is:-
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{x\sin \left( {\dfrac{1}{x}} \right)}&{{\text{if }}x \ne 0} \\
{0,}&{{\text{ if }}x = 0}
\end{array}} \right.\]
Let us first evaluate the value of the function as\[x \to {0^ - }\].
Hence evaluating the limit of the function we get:-
$\Rightarrow$\[f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{x \to {0^ - }} x\sin \left( {\dfrac{1}{x}} \right)\]
Now we know that as \[x \to {0^ - }\]
\[ - 1 \leqslant \sin \left( {\dfrac{1}{x}} \right) \leqslant 1\] i.e. the value of \[\sin \left( {\dfrac{1}{x}} \right)\] from -1 to 1
Hence on evaluating the limit we get:-
\[
f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{x \to {0^ - }} x\sin \left( {\dfrac{1}{x}} \right) = 0 \\
\Rightarrow f\left( {{0^ - }} \right) = 0.................................\left( 1 \right) \\
\]
Now we will evaluate the value of the function as \[x \to {0^ + }\].
Hence evaluating the limit of the function we get:-
$\Rightarrow$\[f\left( {{0^ + }} \right) = \mathop {\lim }\limits_{x \to {0^ + }} x\sin \left( {\dfrac{1}{x}} \right)\]
Now we know that as \[x \to {0^ + }\]
\[ - 1 \leqslant \sin \left( {\dfrac{1}{x}} \right) \leqslant 1\] i.e. the value of \[\sin \left( {\dfrac{1}{x}} \right)\] from -1 to 1
Hence on evaluating the limit we get:-
\[
f\left( {{0^ + }} \right) = \mathop {\lim }\limits_{x \to {0^ + }} x\sin \left( {\dfrac{1}{x}} \right) = 0 \\
\Rightarrow f\left( {{0^ + }} \right) = 0.................................\left( 2 \right) \\
\]
Also, it is given that at \[{\text{ }}x = 0\]
\[f\left( x \right) = 0\]………………………..(3)
From 1, 2 and 3 we get:-
$\Rightarrow$\[f\left( {{0^ - }} \right) = f\left( {{0^ + }} \right) = f\left( 0 \right)\]
Hence the given function is continuous.
Now we will evaluate the derivative of the given function g(x).
$\Rightarrow$\[g\left( x \right) = xf\left( x \right)\]
Putting the value of f(x) we get:-
$\Rightarrow$\[g\left( x \right) = x\left[ {x\sin \left( {\dfrac{1}{x}} \right)} \right]\]
Simplifying it we get:-
$\Rightarrow$\[g\left( x \right) = {x^2}\sin \left( {\dfrac{1}{x}} \right)\]
Now when we put x=0 we get:-
\[g(0) = 0\]
Differentiating the function g(x) using first principle we get:-
\[g\prime (x) = \mathop {lim}\limits_{h \to 0} \dfrac{{g(x + h) - g(x)}}{h}\;{\text{ }}\;{\text{ }}\;\]
Putting in x=0 we get:-
$\Rightarrow$\[g\prime (0) = \mathop {lim}\limits_{h \to 0} \dfrac{{g(h) - g(0)}}{h}\;\]
Putting in the values we get:-
$\Rightarrow$\[g\prime (0) = \mathop {lim}\limits_{h \to 0} \dfrac{{{h^2}\sin \left( {\dfrac{1}{h}} \right) - 0}}{h}\;{\text{ }}\]
Simplifying it further we get:-
$\Rightarrow$\[g\prime (0) = \mathop {lim}\limits_{h \to 0} h\sin \left( {\dfrac{1}{h}} \right){\text{ }}\]
$\Rightarrow$\[ \Rightarrow g\prime (0) = \mathop {lim}\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{1}{h}} \right){\text{ }}}}{{\dfrac{1}{h}}}\;{\text{ }}\;\]
Now we know that,
$\Rightarrow$\[\mathop {lim}\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\]
Applying this property we get:-
\[g\prime (0) = 1\;\] (finite)
Therefore, g(x) is differentiable at x=0.
Hence option B is correct.
Note: Students should take note that:
A function f is continuous when, for every value a in its domain the function is defined i.e.
\[f\left( a \right)\] is defined and \[\mathop {lim}\limits_{x \to a} f\left( x \right) = f(a)\].
Also, students should note that every differentiable function is continuous but the converse is not true i.e. every continuous function is not differentiable; it may or may not be differentiable.
For the given function to be continuous\[f\left( {{0^ - }} \right) = f\left( {{0^ + }} \right) = f\left( 0 \right)\]. Then we will check for the differentiability of the given function by evaluating \[f'\left( x \right)\] and then find its limit at \[x = 0\]. If the limit exists then it is differentiable and if the limit does not exist then it is not differentiable.
Complete step-by-step answer:
The given function is:-
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{x\sin \left( {\dfrac{1}{x}} \right)}&{{\text{if }}x \ne 0} \\
{0,}&{{\text{ if }}x = 0}
\end{array}} \right.\]
Let us first evaluate the value of the function as\[x \to {0^ - }\].
Hence evaluating the limit of the function we get:-
$\Rightarrow$\[f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{x \to {0^ - }} x\sin \left( {\dfrac{1}{x}} \right)\]
Now we know that as \[x \to {0^ - }\]
\[ - 1 \leqslant \sin \left( {\dfrac{1}{x}} \right) \leqslant 1\] i.e. the value of \[\sin \left( {\dfrac{1}{x}} \right)\] from -1 to 1
Hence on evaluating the limit we get:-
\[
f\left( {{0^ - }} \right) = \mathop {\lim }\limits_{x \to {0^ - }} x\sin \left( {\dfrac{1}{x}} \right) = 0 \\
\Rightarrow f\left( {{0^ - }} \right) = 0.................................\left( 1 \right) \\
\]
Now we will evaluate the value of the function as \[x \to {0^ + }\].
Hence evaluating the limit of the function we get:-
$\Rightarrow$\[f\left( {{0^ + }} \right) = \mathop {\lim }\limits_{x \to {0^ + }} x\sin \left( {\dfrac{1}{x}} \right)\]
Now we know that as \[x \to {0^ + }\]
\[ - 1 \leqslant \sin \left( {\dfrac{1}{x}} \right) \leqslant 1\] i.e. the value of \[\sin \left( {\dfrac{1}{x}} \right)\] from -1 to 1
Hence on evaluating the limit we get:-
\[
f\left( {{0^ + }} \right) = \mathop {\lim }\limits_{x \to {0^ + }} x\sin \left( {\dfrac{1}{x}} \right) = 0 \\
\Rightarrow f\left( {{0^ + }} \right) = 0.................................\left( 2 \right) \\
\]
Also, it is given that at \[{\text{ }}x = 0\]
\[f\left( x \right) = 0\]………………………..(3)
From 1, 2 and 3 we get:-
$\Rightarrow$\[f\left( {{0^ - }} \right) = f\left( {{0^ + }} \right) = f\left( 0 \right)\]
Hence the given function is continuous.
Now we will evaluate the derivative of the given function g(x).
$\Rightarrow$\[g\left( x \right) = xf\left( x \right)\]
Putting the value of f(x) we get:-
$\Rightarrow$\[g\left( x \right) = x\left[ {x\sin \left( {\dfrac{1}{x}} \right)} \right]\]
Simplifying it we get:-
$\Rightarrow$\[g\left( x \right) = {x^2}\sin \left( {\dfrac{1}{x}} \right)\]
Now when we put x=0 we get:-
\[g(0) = 0\]
Differentiating the function g(x) using first principle we get:-
\[g\prime (x) = \mathop {lim}\limits_{h \to 0} \dfrac{{g(x + h) - g(x)}}{h}\;{\text{ }}\;{\text{ }}\;\]
Putting in x=0 we get:-
$\Rightarrow$\[g\prime (0) = \mathop {lim}\limits_{h \to 0} \dfrac{{g(h) - g(0)}}{h}\;\]
Putting in the values we get:-
$\Rightarrow$\[g\prime (0) = \mathop {lim}\limits_{h \to 0} \dfrac{{{h^2}\sin \left( {\dfrac{1}{h}} \right) - 0}}{h}\;{\text{ }}\]
Simplifying it further we get:-
$\Rightarrow$\[g\prime (0) = \mathop {lim}\limits_{h \to 0} h\sin \left( {\dfrac{1}{h}} \right){\text{ }}\]
$\Rightarrow$\[ \Rightarrow g\prime (0) = \mathop {lim}\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{1}{h}} \right){\text{ }}}}{{\dfrac{1}{h}}}\;{\text{ }}\;\]
Now we know that,
$\Rightarrow$\[\mathop {lim}\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\]
Applying this property we get:-
\[g\prime (0) = 1\;\] (finite)
Therefore, g(x) is differentiable at x=0.
Hence option B is correct.
Note: Students should take note that:
A function f is continuous when, for every value a in its domain the function is defined i.e.
\[f\left( a \right)\] is defined and \[\mathop {lim}\limits_{x \to a} f\left( x \right) = f(a)\].
Also, students should note that every differentiable function is continuous but the converse is not true i.e. every continuous function is not differentiable; it may or may not be differentiable.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

