
Let $f:D \to \mathbb{R}$, where $D$ is the domain of $f$ . Find the inverse of $f$, if it exists
A) \[f\left( x \right) = 1 - {2^{ - x}}\]
B) \[f\left( x \right) = {\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5}}}\]
C) \[f\left( x \right) = \ln \left( {x + \sqrt {1 + {x^2}} } \right)\]
Answer
585.6k+ views
Hint: The inverse of the function \[{f^{ - 1}}\] exists only if the function $f\left( x \right)$ is one-one and onto.
One-one function: When each element of set B is mapped to only one element of set A, i.e., each object in set A has a unique image in set B, then the function is called one-one function.
onto functions. If for functions $f:{\text{A}} \to {\text{B}}$ the co-domain set of B is also the range for the function, then the function is called an onto function.
Complete step-by-step answer:
Step 1: Solve (1)
\[f\left( x \right) = 1 - {2^{ - x}}\]
On differentiating both sides.
$f'\left( x \right) = + {2^{ - x}}\ln 2 > 0$
\[ \Rightarrow f\left( x \right)\] is an increasing function.
Domain $ = \mathbb{R}$ , where is a set of real numbers.
\[ \Rightarrow f\left( x \right)\] is a one-one function.
$\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } 1 - {2^{ - x}} = - \infty $ $\left( {\because {2^\infty } = \infty } \right)$
$\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } 1 - {2^{ - x}} = 1$ $\left( {\because {2^{ - \infty }} = 0} \right)$
$\therefore $ Range $ = \left( { - \infty ,1} \right)$
But the codomain is $\mathbb{R}$ . Therefore function (1) is not onto. Hence, $f\left( x \right)$ is not invertible. Thus ${f^{ - 1}}$ i.e. inverse function does not exist.
Step 1: Solve (2)
\[f\left( x \right) = {\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5}}}\]
On differentiating both sides.
$
f'\left( x \right) = \dfrac{1}{5}{\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5} - 1}} \times \left( { - 3} \right){\left( {x - 7} \right)^2} \\
\Rightarrow \dfrac{{ - 3{{\left( {x - 7} \right)}^2}}}{{\dfrac{1}{5}{{\left( {4 - {{\left( {x - 7} \right)}^3}} \right)}^{\dfrac{4}{5}}}}} \\
$
For $f'\left( x \right)$ to be defined, the denominator should not be zero.
$
4 - {\left( {x - 7} \right)^3} \ne 0 \\
\Rightarrow {\left( {x - 7} \right)^3} \ne 4 \\
\Rightarrow x - 7 \ne {4^{\dfrac{1}{3}}} \\
\Rightarrow x \ne 7 + {4^{\dfrac{1}{3}}} \\
$
Domain, D $ = \mathbb{R} - \left\{ {7 + {4^{\dfrac{1}{3}}}} \right\}$ , where is a set of real numbers.
For \[x \in D,{\text{ }}f'\left( x \right) > 0\]
\[ \Rightarrow f\left( x \right)\] is a one-one function.
The range $ = \mathbb{R} \Rightarrow f\left( x \right)$ is an onto function.
Thus $f\left( x \right)$ is an invertible function.
Let $f\left( x \right) = y$
\[
y = {\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5}}} \\
\Rightarrow {y^5} = 4 - {\left( {x - 7} \right)^3} \\
\Rightarrow {\left( {x - 7} \right)^3} = 4 - {y^5} \\
\Rightarrow x - 7 = {\left( {4 - {y^5}} \right)^{\dfrac{1}{3}}} \\
\Rightarrow x = 7 + {\left( {4 - {y^5}} \right)^{\dfrac{1}{3}}} \\
\]
Interchange $x \leftrightarrow y$
\[ \Rightarrow y = 7 + {\left( {4 - {x^5}} \right)^{\dfrac{1}{3}}}\]
The inverse of the function, \[{f^{ - 1}}\left( x \right) = 7 + {\left( {4 - {x^5}} \right)^{\dfrac{1}{3}}}\]
Step 3: Solve (3)
\[f\left( x \right) = \ln \left( {x + \sqrt {1 + {x^2}} } \right)\]
For domain: \[x + \sqrt {1 + {x^2}} > 0,{\text{ }}\forall x \in \mathbb{R}\]
Therefore, Domain $ = \mathbb{R}$ , where is a set of real numbers.
Differentiating the given function on both sides.
\[
f'\left( x \right) = \dfrac{{1 + \dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }} \\
\Rightarrow \dfrac{{\dfrac{{x + \sqrt {1 + {x^2}} }}{{\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }} \\
\Rightarrow \dfrac{1}{{\sqrt {1 + {x^2}} }} \\
\]
\[f'\left( x \right) > 0\]
Therefore, the function is one-one.
Range $ = \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \ln \left( {x + \sqrt {1 + {x^2}} } \right)$
Let $L = \mathop {\lim }\limits_{x \to - \infty } \ln \left( {x + \sqrt {1 + {x^2}} } \right)$
Put $x = - h$
$
L = \mathop {\lim }\limits_{h \to \infty } \ln \left( { - h + \sqrt {1 + {{\left( { - h} \right)}^2}} } \right) \\
\Rightarrow \mathop {\lim }\limits_{h \to \infty } \ln \left( { - h + \sqrt {1 + {{\left( h \right)}^2}} \times \dfrac{{\sqrt {1 + {{\left( h \right)}^2}} + h}}{{\sqrt {1 + {{\left( h \right)}^2}} + h}}} \right) \\
\Rightarrow \mathop {\lim }\limits_{h \to \infty } \ln \left( {\dfrac{1}{{\sqrt {1 + {{\left( h \right)}^2}} + h}}} \right) \\
\Rightarrow \mathop {\lim }\limits_{h \to \infty } - \ln \left( {\sqrt {1 + {{\left( h \right)}^2}} + h} \right) \\
\Rightarrow - \infty \\
$
$\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \ln \left( {x + \sqrt {1 + {x^2}} } \right) = \infty $
Therefore, Range $ = \mathbb{R}$
Hence, the function is onto.
Thus, the function is invertible.
Let $f\left( x \right) = y$
$
y = \ln \left( {x + \sqrt {1 + {x^2}} } \right) \\
\Rightarrow {e^y} = \left( {x + \sqrt {1 + {x^2}} } \right) \\
\Rightarrow {e^y} - x = \sqrt {1 + {x^2}} \\
$
Squaring both sides and expanding using the identity ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$
\Rightarrow {\left( {{e^y} - x} \right)^2} = {\left( {\sqrt {1 + {x^2}} } \right)^2} \\
\Rightarrow {e^{2y}} + {x^2} - 2x{e^y} = 1 + {x^2} \\
\Rightarrow {e^{2y}} - 2x{e^y} = 1 \\
\Rightarrow {e^{2y}} - 1 = 2x{e^y} \\
\Rightarrow x = \dfrac{{{e^{2y}} - 1}}{{2{e^y}}} \\
$
Interchange $x \leftrightarrow y$
$ \Rightarrow y = \dfrac{{{e^{2x}} - 1}}{{2{e^x}}}$
The inverse of the function, \[{f^{ - 1}}\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{2{e^x}}}\]
Note: The composition of functions is also useful in checking the invertible function, hence finding the inverse of the function.
A function $f:X \to Y$ is defined to be invertible, if there exists a function $g:Y \to X$ such that $gof = {I_x}$and $fog = {I_y}$ . The function $g$ is called the inverse of $f$ and is denoted by ${f^{ - 1}}$ .
One-one function: When each element of set B is mapped to only one element of set A, i.e., each object in set A has a unique image in set B, then the function is called one-one function.
onto functions. If for functions $f:{\text{A}} \to {\text{B}}$ the co-domain set of B is also the range for the function, then the function is called an onto function.
Complete step-by-step answer:
Step 1: Solve (1)
\[f\left( x \right) = 1 - {2^{ - x}}\]
On differentiating both sides.
$f'\left( x \right) = + {2^{ - x}}\ln 2 > 0$
\[ \Rightarrow f\left( x \right)\] is an increasing function.
Domain $ = \mathbb{R}$ , where is a set of real numbers.
\[ \Rightarrow f\left( x \right)\] is a one-one function.
$\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } 1 - {2^{ - x}} = - \infty $ $\left( {\because {2^\infty } = \infty } \right)$
$\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } 1 - {2^{ - x}} = 1$ $\left( {\because {2^{ - \infty }} = 0} \right)$
$\therefore $ Range $ = \left( { - \infty ,1} \right)$
But the codomain is $\mathbb{R}$ . Therefore function (1) is not onto. Hence, $f\left( x \right)$ is not invertible. Thus ${f^{ - 1}}$ i.e. inverse function does not exist.
Step 1: Solve (2)
\[f\left( x \right) = {\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5}}}\]
On differentiating both sides.
$
f'\left( x \right) = \dfrac{1}{5}{\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5} - 1}} \times \left( { - 3} \right){\left( {x - 7} \right)^2} \\
\Rightarrow \dfrac{{ - 3{{\left( {x - 7} \right)}^2}}}{{\dfrac{1}{5}{{\left( {4 - {{\left( {x - 7} \right)}^3}} \right)}^{\dfrac{4}{5}}}}} \\
$
For $f'\left( x \right)$ to be defined, the denominator should not be zero.
$
4 - {\left( {x - 7} \right)^3} \ne 0 \\
\Rightarrow {\left( {x - 7} \right)^3} \ne 4 \\
\Rightarrow x - 7 \ne {4^{\dfrac{1}{3}}} \\
\Rightarrow x \ne 7 + {4^{\dfrac{1}{3}}} \\
$
Domain, D $ = \mathbb{R} - \left\{ {7 + {4^{\dfrac{1}{3}}}} \right\}$ , where is a set of real numbers.
For \[x \in D,{\text{ }}f'\left( x \right) > 0\]
\[ \Rightarrow f\left( x \right)\] is a one-one function.
The range $ = \mathbb{R} \Rightarrow f\left( x \right)$ is an onto function.
Thus $f\left( x \right)$ is an invertible function.
Let $f\left( x \right) = y$
\[
y = {\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5}}} \\
\Rightarrow {y^5} = 4 - {\left( {x - 7} \right)^3} \\
\Rightarrow {\left( {x - 7} \right)^3} = 4 - {y^5} \\
\Rightarrow x - 7 = {\left( {4 - {y^5}} \right)^{\dfrac{1}{3}}} \\
\Rightarrow x = 7 + {\left( {4 - {y^5}} \right)^{\dfrac{1}{3}}} \\
\]
Interchange $x \leftrightarrow y$
\[ \Rightarrow y = 7 + {\left( {4 - {x^5}} \right)^{\dfrac{1}{3}}}\]
The inverse of the function, \[{f^{ - 1}}\left( x \right) = 7 + {\left( {4 - {x^5}} \right)^{\dfrac{1}{3}}}\]
Step 3: Solve (3)
\[f\left( x \right) = \ln \left( {x + \sqrt {1 + {x^2}} } \right)\]
For domain: \[x + \sqrt {1 + {x^2}} > 0,{\text{ }}\forall x \in \mathbb{R}\]
Therefore, Domain $ = \mathbb{R}$ , where is a set of real numbers.
Differentiating the given function on both sides.
\[
f'\left( x \right) = \dfrac{{1 + \dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }} \\
\Rightarrow \dfrac{{\dfrac{{x + \sqrt {1 + {x^2}} }}{{\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }} \\
\Rightarrow \dfrac{1}{{\sqrt {1 + {x^2}} }} \\
\]
\[f'\left( x \right) > 0\]
Therefore, the function is one-one.
Range $ = \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \ln \left( {x + \sqrt {1 + {x^2}} } \right)$
Let $L = \mathop {\lim }\limits_{x \to - \infty } \ln \left( {x + \sqrt {1 + {x^2}} } \right)$
Put $x = - h$
$
L = \mathop {\lim }\limits_{h \to \infty } \ln \left( { - h + \sqrt {1 + {{\left( { - h} \right)}^2}} } \right) \\
\Rightarrow \mathop {\lim }\limits_{h \to \infty } \ln \left( { - h + \sqrt {1 + {{\left( h \right)}^2}} \times \dfrac{{\sqrt {1 + {{\left( h \right)}^2}} + h}}{{\sqrt {1 + {{\left( h \right)}^2}} + h}}} \right) \\
\Rightarrow \mathop {\lim }\limits_{h \to \infty } \ln \left( {\dfrac{1}{{\sqrt {1 + {{\left( h \right)}^2}} + h}}} \right) \\
\Rightarrow \mathop {\lim }\limits_{h \to \infty } - \ln \left( {\sqrt {1 + {{\left( h \right)}^2}} + h} \right) \\
\Rightarrow - \infty \\
$
$\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \ln \left( {x + \sqrt {1 + {x^2}} } \right) = \infty $
Therefore, Range $ = \mathbb{R}$
Hence, the function is onto.
Thus, the function is invertible.
Let $f\left( x \right) = y$
$
y = \ln \left( {x + \sqrt {1 + {x^2}} } \right) \\
\Rightarrow {e^y} = \left( {x + \sqrt {1 + {x^2}} } \right) \\
\Rightarrow {e^y} - x = \sqrt {1 + {x^2}} \\
$
Squaring both sides and expanding using the identity ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$
\Rightarrow {\left( {{e^y} - x} \right)^2} = {\left( {\sqrt {1 + {x^2}} } \right)^2} \\
\Rightarrow {e^{2y}} + {x^2} - 2x{e^y} = 1 + {x^2} \\
\Rightarrow {e^{2y}} - 2x{e^y} = 1 \\
\Rightarrow {e^{2y}} - 1 = 2x{e^y} \\
\Rightarrow x = \dfrac{{{e^{2y}} - 1}}{{2{e^y}}} \\
$
Interchange $x \leftrightarrow y$
$ \Rightarrow y = \dfrac{{{e^{2x}} - 1}}{{2{e^x}}}$
The inverse of the function, \[{f^{ - 1}}\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{2{e^x}}}\]
Note: The composition of functions is also useful in checking the invertible function, hence finding the inverse of the function.
A function $f:X \to Y$ is defined to be invertible, if there exists a function $g:Y \to X$ such that $gof = {I_x}$and $fog = {I_y}$ . The function $g$ is called the inverse of $f$ and is denoted by ${f^{ - 1}}$ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

