
Let $f:C\to C$ be a complex-valued function defined by $f\left( x \right)={{x}^{3}}$. Determine the set ${{f}^{-1}}\left( -1 \right)$
Answer
592.5k+ views
Hint: Use the definition of ${{f}^{-1}}\left( -1 \right)$ as $\left\{ x:{{x}^{3}}=1,x\in C \right\}$.Use the formula ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ and zero product property. Use the quadratic formula for solving the quadratic equation generated while solving the question.
Complete step-by-step answer:
Let $x\in {{f}^{-1}}\left( -1 \right)$
Since ${{f}^{-1}}\left( -1 \right)=\left\{ x:{{x}^{3}}=1,x\in C \right\}$ we have ${{x}^{3}}=-1$
Adding 1 on both sides, we get
${{x}^{3}}+1=0$
We know that ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
Using the above formula, we get
$\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)=0$
From zero product property, we know that if ab = 0 then, a= 0 or b = 0.
Hence we have
$x+1=0$ or ${{x}^{2}}-x+1=0$
If x + 1 = 0, then x = -1
If ${{x}^{2}}-x+1=0$ then we know that roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ are $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Here a = 1, b = -1 , c= 1
Using the above formula, we get
$x=\dfrac{1\pm \sqrt{1-4}}{2}=\dfrac{1\pm \sqrt{-3}}{2}=\dfrac{1\pm i\sqrt{3}}{2}$
Taking + sign we get $x=\dfrac{1+i\sqrt{3}}{2}$
Taking – sign we get $x=\dfrac{1-i\sqrt{3}}{2}$
Hence we have ${{f}^{-1}}\left( -1 \right)=\left\{ -1,\dfrac{1+i\sqrt{3}}{2},\dfrac{1-i\sqrt{3}}{2} \right\}$
Note: Alternate solution 1.
We know that if ${{x}^{3}}=1$ then $x=1,\omega ,{{\omega }^{2}}$ where $\omega =\dfrac{-1+i\sqrt{3}}{2}$
Now we have ${{x}^{3}}=-1$
Put t = -x
So, we have ${{t}^{3}}=1$
Hence $t=1,\omega ,{{\omega }^{2}}$
Reverting to the original variable, we get
$\begin{align}
& -x=1,\omega ,{{\omega }^{2}} \\
& \Rightarrow x=-1,-\omega .-{{\omega }^{2}} \\
& \Rightarrow x=-1,\dfrac{1-i\sqrt{3}}{2},\dfrac{1+i\sqrt{3}}{2} \\
\end{align}$
which is the same as obtained above.
Alternate Solution 2.
We know that ${{e}^{i\left( 2k+1 \right)\pi }}=-1,k\in \mathbb{Z}$
Hence we have
\[\begin{align}
& {{x}^{3}}={{e}^{i\left( 2k+1 \right)\pi }} \\
& \Rightarrow x={{e}^{i\dfrac{\left( 2k+1 \right)\pi }{3}}},k=0,1,2 \\
\end{align}\]
Hence we have \[x={{e}^{\dfrac{\pi }{3}i}},{{e}^{\dfrac{3\pi }{3}i}},{{e}^{\dfrac{5\pi }{3}i}}\]
Using ${{e}^{ix}}=\cos x+i\sin x$, we get
$x=\dfrac{1+i\sqrt{3}}{2},-1,\dfrac{1-i\sqrt{3}}{2}$ which is the same as obtained above
Alternate Solution 3:
If $1,\alpha ,{{\alpha }^{2}},\ldots ,{{\alpha }^{n-1}}$ are the nth roots of unity
then the solutions of the equation ${{x}^{n}}=a,a\in R$ , such that there exists at least one real root, are $p,p\alpha ,p{{\alpha }^{2}},\ldots ,p{{\alpha }^{n-1}}$ where p is one of the real roots of the equations,e.g. $p={{a}^{\dfrac{1}{n}}}$
Taking n = 3 , a = -1 and $\alpha =\omega $ we get the desired result.
Complete step-by-step answer:
Let $x\in {{f}^{-1}}\left( -1 \right)$
Since ${{f}^{-1}}\left( -1 \right)=\left\{ x:{{x}^{3}}=1,x\in C \right\}$ we have ${{x}^{3}}=-1$
Adding 1 on both sides, we get
${{x}^{3}}+1=0$
We know that ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
Using the above formula, we get
$\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)=0$
From zero product property, we know that if ab = 0 then, a= 0 or b = 0.
Hence we have
$x+1=0$ or ${{x}^{2}}-x+1=0$
If x + 1 = 0, then x = -1
If ${{x}^{2}}-x+1=0$ then we know that roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ are $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Here a = 1, b = -1 , c= 1
Using the above formula, we get
$x=\dfrac{1\pm \sqrt{1-4}}{2}=\dfrac{1\pm \sqrt{-3}}{2}=\dfrac{1\pm i\sqrt{3}}{2}$
Taking + sign we get $x=\dfrac{1+i\sqrt{3}}{2}$
Taking – sign we get $x=\dfrac{1-i\sqrt{3}}{2}$
Hence we have ${{f}^{-1}}\left( -1 \right)=\left\{ -1,\dfrac{1+i\sqrt{3}}{2},\dfrac{1-i\sqrt{3}}{2} \right\}$
Note: Alternate solution 1.
We know that if ${{x}^{3}}=1$ then $x=1,\omega ,{{\omega }^{2}}$ where $\omega =\dfrac{-1+i\sqrt{3}}{2}$
Now we have ${{x}^{3}}=-1$
Put t = -x
So, we have ${{t}^{3}}=1$
Hence $t=1,\omega ,{{\omega }^{2}}$
Reverting to the original variable, we get
$\begin{align}
& -x=1,\omega ,{{\omega }^{2}} \\
& \Rightarrow x=-1,-\omega .-{{\omega }^{2}} \\
& \Rightarrow x=-1,\dfrac{1-i\sqrt{3}}{2},\dfrac{1+i\sqrt{3}}{2} \\
\end{align}$
which is the same as obtained above.
Alternate Solution 2.
We know that ${{e}^{i\left( 2k+1 \right)\pi }}=-1,k\in \mathbb{Z}$
Hence we have
\[\begin{align}
& {{x}^{3}}={{e}^{i\left( 2k+1 \right)\pi }} \\
& \Rightarrow x={{e}^{i\dfrac{\left( 2k+1 \right)\pi }{3}}},k=0,1,2 \\
\end{align}\]
Hence we have \[x={{e}^{\dfrac{\pi }{3}i}},{{e}^{\dfrac{3\pi }{3}i}},{{e}^{\dfrac{5\pi }{3}i}}\]
Using ${{e}^{ix}}=\cos x+i\sin x$, we get
$x=\dfrac{1+i\sqrt{3}}{2},-1,\dfrac{1-i\sqrt{3}}{2}$ which is the same as obtained above
Alternate Solution 3:
If $1,\alpha ,{{\alpha }^{2}},\ldots ,{{\alpha }^{n-1}}$ are the nth roots of unity
then the solutions of the equation ${{x}^{n}}=a,a\in R$ , such that there exists at least one real root, are $p,p\alpha ,p{{\alpha }^{2}},\ldots ,p{{\alpha }^{n-1}}$ where p is one of the real roots of the equations,e.g. $p={{a}^{\dfrac{1}{n}}}$
Taking n = 3 , a = -1 and $\alpha =\omega $ we get the desired result.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What does the Hymn Ek ONKAR SATNAM KARTA PURAKH NIRBHAU class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How will you obtain OR AND gates from the NAND and class 12 physics CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

Differentiate between exergonic and endergonic rea class 12 biology CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

