
Let $f:C\to C$ be a complex-valued function defined by $f\left( x \right)={{x}^{3}}$. Determine the set ${{f}^{-1}}\left( -1 \right)$
Answer
600k+ views
Hint: Use the definition of ${{f}^{-1}}\left( -1 \right)$ as $\left\{ x:{{x}^{3}}=1,x\in C \right\}$.Use the formula ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ and zero product property. Use the quadratic formula for solving the quadratic equation generated while solving the question.
Complete step-by-step answer:
Let $x\in {{f}^{-1}}\left( -1 \right)$
Since ${{f}^{-1}}\left( -1 \right)=\left\{ x:{{x}^{3}}=1,x\in C \right\}$ we have ${{x}^{3}}=-1$
Adding 1 on both sides, we get
${{x}^{3}}+1=0$
We know that ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
Using the above formula, we get
$\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)=0$
From zero product property, we know that if ab = 0 then, a= 0 or b = 0.
Hence we have
$x+1=0$ or ${{x}^{2}}-x+1=0$
If x + 1 = 0, then x = -1
If ${{x}^{2}}-x+1=0$ then we know that roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ are $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Here a = 1, b = -1 , c= 1
Using the above formula, we get
$x=\dfrac{1\pm \sqrt{1-4}}{2}=\dfrac{1\pm \sqrt{-3}}{2}=\dfrac{1\pm i\sqrt{3}}{2}$
Taking + sign we get $x=\dfrac{1+i\sqrt{3}}{2}$
Taking – sign we get $x=\dfrac{1-i\sqrt{3}}{2}$
Hence we have ${{f}^{-1}}\left( -1 \right)=\left\{ -1,\dfrac{1+i\sqrt{3}}{2},\dfrac{1-i\sqrt{3}}{2} \right\}$
Note: Alternate solution 1.
We know that if ${{x}^{3}}=1$ then $x=1,\omega ,{{\omega }^{2}}$ where $\omega =\dfrac{-1+i\sqrt{3}}{2}$
Now we have ${{x}^{3}}=-1$
Put t = -x
So, we have ${{t}^{3}}=1$
Hence $t=1,\omega ,{{\omega }^{2}}$
Reverting to the original variable, we get
$\begin{align}
& -x=1,\omega ,{{\omega }^{2}} \\
& \Rightarrow x=-1,-\omega .-{{\omega }^{2}} \\
& \Rightarrow x=-1,\dfrac{1-i\sqrt{3}}{2},\dfrac{1+i\sqrt{3}}{2} \\
\end{align}$
which is the same as obtained above.
Alternate Solution 2.
We know that ${{e}^{i\left( 2k+1 \right)\pi }}=-1,k\in \mathbb{Z}$
Hence we have
\[\begin{align}
& {{x}^{3}}={{e}^{i\left( 2k+1 \right)\pi }} \\
& \Rightarrow x={{e}^{i\dfrac{\left( 2k+1 \right)\pi }{3}}},k=0,1,2 \\
\end{align}\]
Hence we have \[x={{e}^{\dfrac{\pi }{3}i}},{{e}^{\dfrac{3\pi }{3}i}},{{e}^{\dfrac{5\pi }{3}i}}\]
Using ${{e}^{ix}}=\cos x+i\sin x$, we get
$x=\dfrac{1+i\sqrt{3}}{2},-1,\dfrac{1-i\sqrt{3}}{2}$ which is the same as obtained above
Alternate Solution 3:
If $1,\alpha ,{{\alpha }^{2}},\ldots ,{{\alpha }^{n-1}}$ are the nth roots of unity
then the solutions of the equation ${{x}^{n}}=a,a\in R$ , such that there exists at least one real root, are $p,p\alpha ,p{{\alpha }^{2}},\ldots ,p{{\alpha }^{n-1}}$ where p is one of the real roots of the equations,e.g. $p={{a}^{\dfrac{1}{n}}}$
Taking n = 3 , a = -1 and $\alpha =\omega $ we get the desired result.
Complete step-by-step answer:
Let $x\in {{f}^{-1}}\left( -1 \right)$
Since ${{f}^{-1}}\left( -1 \right)=\left\{ x:{{x}^{3}}=1,x\in C \right\}$ we have ${{x}^{3}}=-1$
Adding 1 on both sides, we get
${{x}^{3}}+1=0$
We know that ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$
Using the above formula, we get
$\left( x+1 \right)\left( {{x}^{2}}-x+1 \right)=0$
From zero product property, we know that if ab = 0 then, a= 0 or b = 0.
Hence we have
$x+1=0$ or ${{x}^{2}}-x+1=0$
If x + 1 = 0, then x = -1
If ${{x}^{2}}-x+1=0$ then we know that roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ are $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Here a = 1, b = -1 , c= 1
Using the above formula, we get
$x=\dfrac{1\pm \sqrt{1-4}}{2}=\dfrac{1\pm \sqrt{-3}}{2}=\dfrac{1\pm i\sqrt{3}}{2}$
Taking + sign we get $x=\dfrac{1+i\sqrt{3}}{2}$
Taking – sign we get $x=\dfrac{1-i\sqrt{3}}{2}$
Hence we have ${{f}^{-1}}\left( -1 \right)=\left\{ -1,\dfrac{1+i\sqrt{3}}{2},\dfrac{1-i\sqrt{3}}{2} \right\}$
Note: Alternate solution 1.
We know that if ${{x}^{3}}=1$ then $x=1,\omega ,{{\omega }^{2}}$ where $\omega =\dfrac{-1+i\sqrt{3}}{2}$
Now we have ${{x}^{3}}=-1$
Put t = -x
So, we have ${{t}^{3}}=1$
Hence $t=1,\omega ,{{\omega }^{2}}$
Reverting to the original variable, we get
$\begin{align}
& -x=1,\omega ,{{\omega }^{2}} \\
& \Rightarrow x=-1,-\omega .-{{\omega }^{2}} \\
& \Rightarrow x=-1,\dfrac{1-i\sqrt{3}}{2},\dfrac{1+i\sqrt{3}}{2} \\
\end{align}$
which is the same as obtained above.
Alternate Solution 2.
We know that ${{e}^{i\left( 2k+1 \right)\pi }}=-1,k\in \mathbb{Z}$
Hence we have
\[\begin{align}
& {{x}^{3}}={{e}^{i\left( 2k+1 \right)\pi }} \\
& \Rightarrow x={{e}^{i\dfrac{\left( 2k+1 \right)\pi }{3}}},k=0,1,2 \\
\end{align}\]
Hence we have \[x={{e}^{\dfrac{\pi }{3}i}},{{e}^{\dfrac{3\pi }{3}i}},{{e}^{\dfrac{5\pi }{3}i}}\]
Using ${{e}^{ix}}=\cos x+i\sin x$, we get
$x=\dfrac{1+i\sqrt{3}}{2},-1,\dfrac{1-i\sqrt{3}}{2}$ which is the same as obtained above
Alternate Solution 3:
If $1,\alpha ,{{\alpha }^{2}},\ldots ,{{\alpha }^{n-1}}$ are the nth roots of unity
then the solutions of the equation ${{x}^{n}}=a,a\in R$ , such that there exists at least one real root, are $p,p\alpha ,p{{\alpha }^{2}},\ldots ,p{{\alpha }^{n-1}}$ where p is one of the real roots of the equations,e.g. $p={{a}^{\dfrac{1}{n}}}$
Taking n = 3 , a = -1 and $\alpha =\omega $ we get the desired result.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

