Let \[f\] be a function from positive integers to the set of real numbers such that
(i) \[f\left( 1 \right) = 1\]
(ii) \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right),{\rm{ }}\forall n \ge 2\]
Find the value of \[2126f\left( {1063} \right)\].
Answer
Verified
459.3k+ views
Hint: Here, we will use the given information to find the values of the function at 2, 3, 4, and 5. Then, we will use these equations to form a generalised equation. Finally, we will use the generalised equation to find and simplify the value of the expression \[2126f\left( {1063} \right)\].
Complete step-by-step answer:
It is given that \[n \ge 2\].
Substituting \[n = 2\] in the equation \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right)\], we get
\[ \Rightarrow \sum\limits_{r = 1}^2 {rf\left( r \right)} = 2\left( {2 + 1} \right)f\left( 2 \right)\]
Adding the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^2 {rf\left( r \right)} = 2\left( 3 \right)f\left( 2 \right)\]
Multiplying the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^2 {rf\left( r \right)} = 6f\left( 2 \right)\]
Expanding the sum, we get
\[ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) = 6f\left( 2 \right)\]
Subtracting \[2f\left( 2 \right)\] from both sides, we get
\[\begin{array}{l} \Rightarrow f\left( 1 \right) + 2f\left( 2 \right) - 2f\left( 2 \right) = 6f\left( 2 \right) - 2f\left( 2 \right)\\ \Rightarrow f\left( 1 \right) = 4f\left( 2 \right)\end{array}\]
Substituting \[f\left( 1 \right) = 1\] in the equation, we get
\[ \Rightarrow 1 = 4f\left( 2 \right)\]
Dividing both sides of the equation by 4, we get
\[ \Rightarrow f\left( 2 \right) = \dfrac{1}{4} \ldots \ldots \ldots \left( 1 \right)\]
Substituting \[n = 3\] in the equation \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right)\], we get
\[ \Rightarrow \sum\limits_{r = 1}^3 {rf\left( r \right)} = 3\left( {3 + 1} \right)f\left( 3 \right)\]
Adding the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^3 {rf\left( r \right)} = 3\left( 4 \right)f\left( 3 \right)\]
Multiplying the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^3 {rf\left( r \right)} = 12f\left( 3 \right)\]
Expanding the sum, we get
\[ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) = 12f\left( 3 \right)\]
Subtracting \[3f\left( 3 \right)\] from both sides, we get
\[\begin{array}{l} \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) - 3f\left( 3 \right) = 12f\left( 3 \right) - 3f\left( 3 \right)\\ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) = 9f\left( 3 \right)\end{array}\]
Substituting \[f\left( 1 \right) = 1\] and \[f\left( 2 \right) = \dfrac{1}{4}\] in the equation, we get
\[ \Rightarrow 1\left( 1 \right) + 2\left( {\dfrac{1}{4}} \right) = 9f\left( 3 \right)\]
Multiplying and adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow 1 + \dfrac{1}{2} = 9f\left( 3 \right)\\ \Rightarrow \dfrac{3}{2} = 9f\left( 3 \right)\end{array}\]
Dividing both sides by 6, we get
\[\begin{array}{l} \Rightarrow f\left( 3 \right) = \dfrac{3}{{2 \times 9}}\\ \Rightarrow f\left( 3 \right) = \dfrac{1}{{2 \times 3}}\\ \Rightarrow f\left( 3 \right) = \dfrac{1}{6} \ldots \ldots \ldots \left( 2 \right)\end{array}\]
Substituting \[n = 4\] in the equation \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right)\], we get
\[ \Rightarrow \sum\limits_{r = 1}^4 {rf\left( r \right)} = 4\left( {4 + 1} \right)f\left( 4 \right)\]
Adding the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^4 {rf\left( r \right)} = 4\left( 5 \right)f\left( 4 \right)\]
Multiplying the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^4 {rf\left( r \right)} = 20f\left( 4 \right)\]
Expanding the sum, we get
\[ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) + 4f\left( 4 \right) = 20f\left( 4 \right)\]
Subtracting \[4f\left( 4 \right)\] from both sides, we get
\[\begin{array}{l} \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) + 4f\left( 4 \right) - 4f\left( 4 \right) = 20f\left( 4 \right) - 4f\left( 4 \right)\\ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) = 16f\left( 4 \right)\end{array}\]
Substituting \[f\left( 1 \right) = 1\], \[f\left( 2 \right) = \dfrac{1}{4}\], and \[f\left( 3 \right) = \dfrac{1}{6}\] in the equation, we get
\[ \Rightarrow 1\left( 1 \right) + 2\left( {\dfrac{1}{4}} \right) + 3\left( {\dfrac{1}{6}} \right) = 16f\left( 4 \right)\]
Multiplying and adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow 1 + \dfrac{1}{2} + \dfrac{1}{2} = 16f\left( 4 \right)\\ \Rightarrow 2 = 16f\left( 4 \right)\end{array}\]
Dividing both sides by 16, we get
\[\begin{array}{l} \Rightarrow f\left( 4 \right) = \dfrac{2}{{16}}\\ \Rightarrow f\left( 4 \right) = \dfrac{1}{8} \ldots \ldots \ldots \left( 3 \right)\end{array}\]
Substituting \[n = 5\] in the equation \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right)\], we get
\[ \Rightarrow \sum\limits_{r = 1}^5 {rf\left( r \right)} = 5\left( {5 + 1} \right)f\left( 5 \right)\]
Adding the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^5 {rf\left( r \right)} = 5\left( 6 \right)f\left( 5 \right)\]
Multiplying the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^5 {rf\left( r \right)} = 30f\left( 5 \right)\]
Expanding the sum, we get
\[ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) + 4f\left( 4 \right) + 5f\left( 5 \right) = 30f\left( 5 \right)\]
Subtracting \[5f\left( 5 \right)\] from both sides, we get
\[\begin{array}{l} \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) + 4f\left( 4 \right) + 5f\left( 5 \right) - 5f\left( 5 \right) = 30f\left( 5 \right) - 5f\left( 5 \right)\\ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) + 4f\left( 4 \right) = 25f\left( 5 \right)\end{array}\]
Substituting \[f\left( 1 \right) = 1\], \[f\left( 2 \right) = \dfrac{1}{4}\], \[f\left( 3 \right) = \dfrac{1}{6}\], and \[f\left( 4 \right) = \dfrac{1}{8}\] in the equation, we get
\[ \Rightarrow 1\left( 1 \right) + 2\left( {\dfrac{1}{4}} \right) + 3\left( {\dfrac{1}{6}} \right) + 4\left( {\dfrac{1}{8}} \right) = 25f\left( 5 \right)\]
Multiplying and adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow 1 + \dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{2} = 25f\left( 5 \right)\\ \Rightarrow \dfrac{5}{2} = 25f\left( 5 \right)\end{array}\]
Dividing both sides by 25, we get
\[\begin{array}{l} \Rightarrow f\left( 5 \right) = \dfrac{5}{{2 \times 25}}\\ \Rightarrow f\left( 5 \right) = \dfrac{1}{{2 \times 5}}\\ \Rightarrow f\left( 5 \right) = \dfrac{1}{{10}} \ldots \ldots \ldots \left( 4 \right)\end{array}\]
Now, from equations \[\left( 1 \right)\], \[\left( 2 \right)\], \[\left( 3 \right)\], and \[\left( 4 \right)\], we have
\[f\left( 2 \right) = \dfrac{1}{4}\]
\[f\left( 3 \right) = \dfrac{1}{6}\]
\[f\left( 4 \right) = \dfrac{1}{8}\]
\[f\left( 5 \right) = \dfrac{1}{{10}}\]
Rewriting these equations, we get
\[f\left( 2 \right) = \dfrac{1}{{2 \times 2}}\]
\[f\left( 3 \right) = \dfrac{1}{{2 \times 3}}\]
\[f\left( 4 \right) = \dfrac{1}{{2 \times 4}}\]
\[f\left( 5 \right) = \dfrac{1}{{2 \times 5}}\]
Thus, from the above equations, we can generalise the formula for \[f\left( n \right)\] as
\[f\left( n \right) = \dfrac{1}{{2n}}\]
Now, we will find the value of \[f\left( {1063} \right)\].
Substituting \[n = 1063\] in the generalised equation \[f\left( n \right) = \dfrac{1}{{2n}}\], we get
\[ \Rightarrow f\left( {1063} \right) = \dfrac{1}{{2 \times 1063}}\]
Multiplying the terms of the expression, we get
\[ \Rightarrow f\left( {1063} \right) = \dfrac{1}{{2126}}\]
Multiplying both sides by 2126, we get
\[ \Rightarrow 2126f\left( {1063} \right) = \dfrac{{2126}}{{2126}}\]
Simplifying the expression, we get
\[ \Rightarrow 2126f\left( {1063} \right) = 1\]
\[\therefore \] The value of the expression \[2126f\left( {1063} \right)\] is 1.
Note: We need to take care of the values that \[n\] can take according to the question. We substituted the values of \[n\] as 2, 3, 4, and 5, and used the equations to form the generalised equation. We did not substitute the value of \[n\] as 1 because it is given that \[n \ge 2\]. If we substitute \[n\] as 1 in \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right)\], then we get the equation \[f\left( 1 \right) = 2f\left( 1 \right)\]. This is not possible since \[f\left( 1 \right) = 1\].
Complete step-by-step answer:
It is given that \[n \ge 2\].
Substituting \[n = 2\] in the equation \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right)\], we get
\[ \Rightarrow \sum\limits_{r = 1}^2 {rf\left( r \right)} = 2\left( {2 + 1} \right)f\left( 2 \right)\]
Adding the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^2 {rf\left( r \right)} = 2\left( 3 \right)f\left( 2 \right)\]
Multiplying the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^2 {rf\left( r \right)} = 6f\left( 2 \right)\]
Expanding the sum, we get
\[ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) = 6f\left( 2 \right)\]
Subtracting \[2f\left( 2 \right)\] from both sides, we get
\[\begin{array}{l} \Rightarrow f\left( 1 \right) + 2f\left( 2 \right) - 2f\left( 2 \right) = 6f\left( 2 \right) - 2f\left( 2 \right)\\ \Rightarrow f\left( 1 \right) = 4f\left( 2 \right)\end{array}\]
Substituting \[f\left( 1 \right) = 1\] in the equation, we get
\[ \Rightarrow 1 = 4f\left( 2 \right)\]
Dividing both sides of the equation by 4, we get
\[ \Rightarrow f\left( 2 \right) = \dfrac{1}{4} \ldots \ldots \ldots \left( 1 \right)\]
Substituting \[n = 3\] in the equation \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right)\], we get
\[ \Rightarrow \sum\limits_{r = 1}^3 {rf\left( r \right)} = 3\left( {3 + 1} \right)f\left( 3 \right)\]
Adding the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^3 {rf\left( r \right)} = 3\left( 4 \right)f\left( 3 \right)\]
Multiplying the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^3 {rf\left( r \right)} = 12f\left( 3 \right)\]
Expanding the sum, we get
\[ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) = 12f\left( 3 \right)\]
Subtracting \[3f\left( 3 \right)\] from both sides, we get
\[\begin{array}{l} \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) - 3f\left( 3 \right) = 12f\left( 3 \right) - 3f\left( 3 \right)\\ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) = 9f\left( 3 \right)\end{array}\]
Substituting \[f\left( 1 \right) = 1\] and \[f\left( 2 \right) = \dfrac{1}{4}\] in the equation, we get
\[ \Rightarrow 1\left( 1 \right) + 2\left( {\dfrac{1}{4}} \right) = 9f\left( 3 \right)\]
Multiplying and adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow 1 + \dfrac{1}{2} = 9f\left( 3 \right)\\ \Rightarrow \dfrac{3}{2} = 9f\left( 3 \right)\end{array}\]
Dividing both sides by 6, we get
\[\begin{array}{l} \Rightarrow f\left( 3 \right) = \dfrac{3}{{2 \times 9}}\\ \Rightarrow f\left( 3 \right) = \dfrac{1}{{2 \times 3}}\\ \Rightarrow f\left( 3 \right) = \dfrac{1}{6} \ldots \ldots \ldots \left( 2 \right)\end{array}\]
Substituting \[n = 4\] in the equation \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right)\], we get
\[ \Rightarrow \sum\limits_{r = 1}^4 {rf\left( r \right)} = 4\left( {4 + 1} \right)f\left( 4 \right)\]
Adding the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^4 {rf\left( r \right)} = 4\left( 5 \right)f\left( 4 \right)\]
Multiplying the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^4 {rf\left( r \right)} = 20f\left( 4 \right)\]
Expanding the sum, we get
\[ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) + 4f\left( 4 \right) = 20f\left( 4 \right)\]
Subtracting \[4f\left( 4 \right)\] from both sides, we get
\[\begin{array}{l} \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) + 4f\left( 4 \right) - 4f\left( 4 \right) = 20f\left( 4 \right) - 4f\left( 4 \right)\\ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) = 16f\left( 4 \right)\end{array}\]
Substituting \[f\left( 1 \right) = 1\], \[f\left( 2 \right) = \dfrac{1}{4}\], and \[f\left( 3 \right) = \dfrac{1}{6}\] in the equation, we get
\[ \Rightarrow 1\left( 1 \right) + 2\left( {\dfrac{1}{4}} \right) + 3\left( {\dfrac{1}{6}} \right) = 16f\left( 4 \right)\]
Multiplying and adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow 1 + \dfrac{1}{2} + \dfrac{1}{2} = 16f\left( 4 \right)\\ \Rightarrow 2 = 16f\left( 4 \right)\end{array}\]
Dividing both sides by 16, we get
\[\begin{array}{l} \Rightarrow f\left( 4 \right) = \dfrac{2}{{16}}\\ \Rightarrow f\left( 4 \right) = \dfrac{1}{8} \ldots \ldots \ldots \left( 3 \right)\end{array}\]
Substituting \[n = 5\] in the equation \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right)\], we get
\[ \Rightarrow \sum\limits_{r = 1}^5 {rf\left( r \right)} = 5\left( {5 + 1} \right)f\left( 5 \right)\]
Adding the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^5 {rf\left( r \right)} = 5\left( 6 \right)f\left( 5 \right)\]
Multiplying the terms in the expression, we get
\[ \Rightarrow \sum\limits_{r = 1}^5 {rf\left( r \right)} = 30f\left( 5 \right)\]
Expanding the sum, we get
\[ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) + 4f\left( 4 \right) + 5f\left( 5 \right) = 30f\left( 5 \right)\]
Subtracting \[5f\left( 5 \right)\] from both sides, we get
\[\begin{array}{l} \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) + 4f\left( 4 \right) + 5f\left( 5 \right) - 5f\left( 5 \right) = 30f\left( 5 \right) - 5f\left( 5 \right)\\ \Rightarrow 1f\left( 1 \right) + 2f\left( 2 \right) + 3f\left( 3 \right) + 4f\left( 4 \right) = 25f\left( 5 \right)\end{array}\]
Substituting \[f\left( 1 \right) = 1\], \[f\left( 2 \right) = \dfrac{1}{4}\], \[f\left( 3 \right) = \dfrac{1}{6}\], and \[f\left( 4 \right) = \dfrac{1}{8}\] in the equation, we get
\[ \Rightarrow 1\left( 1 \right) + 2\left( {\dfrac{1}{4}} \right) + 3\left( {\dfrac{1}{6}} \right) + 4\left( {\dfrac{1}{8}} \right) = 25f\left( 5 \right)\]
Multiplying and adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow 1 + \dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{2} = 25f\left( 5 \right)\\ \Rightarrow \dfrac{5}{2} = 25f\left( 5 \right)\end{array}\]
Dividing both sides by 25, we get
\[\begin{array}{l} \Rightarrow f\left( 5 \right) = \dfrac{5}{{2 \times 25}}\\ \Rightarrow f\left( 5 \right) = \dfrac{1}{{2 \times 5}}\\ \Rightarrow f\left( 5 \right) = \dfrac{1}{{10}} \ldots \ldots \ldots \left( 4 \right)\end{array}\]
Now, from equations \[\left( 1 \right)\], \[\left( 2 \right)\], \[\left( 3 \right)\], and \[\left( 4 \right)\], we have
\[f\left( 2 \right) = \dfrac{1}{4}\]
\[f\left( 3 \right) = \dfrac{1}{6}\]
\[f\left( 4 \right) = \dfrac{1}{8}\]
\[f\left( 5 \right) = \dfrac{1}{{10}}\]
Rewriting these equations, we get
\[f\left( 2 \right) = \dfrac{1}{{2 \times 2}}\]
\[f\left( 3 \right) = \dfrac{1}{{2 \times 3}}\]
\[f\left( 4 \right) = \dfrac{1}{{2 \times 4}}\]
\[f\left( 5 \right) = \dfrac{1}{{2 \times 5}}\]
Thus, from the above equations, we can generalise the formula for \[f\left( n \right)\] as
\[f\left( n \right) = \dfrac{1}{{2n}}\]
Now, we will find the value of \[f\left( {1063} \right)\].
Substituting \[n = 1063\] in the generalised equation \[f\left( n \right) = \dfrac{1}{{2n}}\], we get
\[ \Rightarrow f\left( {1063} \right) = \dfrac{1}{{2 \times 1063}}\]
Multiplying the terms of the expression, we get
\[ \Rightarrow f\left( {1063} \right) = \dfrac{1}{{2126}}\]
Multiplying both sides by 2126, we get
\[ \Rightarrow 2126f\left( {1063} \right) = \dfrac{{2126}}{{2126}}\]
Simplifying the expression, we get
\[ \Rightarrow 2126f\left( {1063} \right) = 1\]
\[\therefore \] The value of the expression \[2126f\left( {1063} \right)\] is 1.
Note: We need to take care of the values that \[n\] can take according to the question. We substituted the values of \[n\] as 2, 3, 4, and 5, and used the equations to form the generalised equation. We did not substitute the value of \[n\] as 1 because it is given that \[n \ge 2\]. If we substitute \[n\] as 1 in \[\sum\limits_{r = 1}^n {rf\left( r \right)} = n\left( {n + 1} \right)f\left( n \right)\], then we get the equation \[f\left( 1 \right) = 2f\left( 1 \right)\]. This is not possible since \[f\left( 1 \right) = 1\].
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Draw a labelled sketch of the human eye class 12 physics CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE
How much time does it take to bleed after eating p class 12 biology CBSE