
Let $f$ and $g$ be the functions defined by $f(x) = \dfrac{x}{{1 + x}}$ and $g(x) = \dfrac{x}{{1 - x}}$. Then $fo{g^{ - 1}}(x) = $ ?
A) $x$
B) $2x$
C) $3x$
D) $4x$
Answer
509.7k+ views
Hint: The term $fog$ means a composite function of $f{\text{ and }}g$. And can be denoted as:
$fog = f(g(x))$
But we have to find the inverse of this composite function its inverse will be written as:
\[{\left( {fog} \right)^{ - 1}}\;\left( x \right){\text{ }} = {\text{ }}({g^{ - 1}}\;o{\text{ }}{f^{ - 1}}){\text{ }}\left( x \right)\]
That means we will find first the inverse of the two given function and find $fo{g^{ - 1}}(x)$
Complete step by step answer:
We are given :$f(x) = \dfrac{x}{{1 + x}}$
And $g(x) = \dfrac{x}{{1 - x}}$
We have to find the $fo{g^{ - 1}}(x)$.
Since: \[{\left( {fog} \right)^{ - 1}}\;\left( x \right){\text{ }} = {\text{ }}({g^{ - 1}}\;o{\text{ }}{f^{ - 1}}){\text{ }}\left( x \right)\]
We will find the inverses of both the function:
Inverse of Function $f(x)$:
$f(x) = y = \dfrac{x}{{1 + x}}$
$ \Rightarrow y(x + 1) = x$
$ \Rightarrow x = yx + y$
To find inverse we try to express this function in terms of $y$ instead of $x$
\[ \Rightarrow x{\text{ }}\left( {1{\text{ }}-{\text{ }}y} \right){\text{ }} = {\text{ }}y\]
\[ \Rightarrow x{\text{ }} = \dfrac{{{\text{ }}y}}{{{\text{ }}\left[ {1{\text{ }}-{\text{ }}y} \right]}}{\text{ }}\]
\[{f^{ - 1}}\;\left( y \right){\text{ }} = \dfrac{{{\text{ }}y}}{{\left[ {1{\text{ }}-{\text{ }}y} \right]}}{\text{ }}\]
\[{f^{ - 1}}\;\left( x \right){\text{ }} = {\text{ }}\dfrac{{x{\text{ }}}}{{1 - x}}\]
The inverse of function $g(x)$
Let \[z{\text{ }} = {\text{ }}g{\text{ }}\left( x \right){\text{ }} = \dfrac{{{\text{ }}x}}{{\left[ {1{\text{ }}-{\text{ }}x} \right]}}{\text{ }}\]
\[ \Rightarrow z{\text{ }}-{\text{ }}zx{\text{ }} = {\text{ }}x\]
\[ \Rightarrow x{\text{ }}\left( {z{\text{ }} + {\text{ }}1} \right){\text{ }} = {\text{ }}z\]
\[ \Rightarrow x{\text{ }} = \dfrac{{{\text{ }}z{\text{ }}}}{{z{\text{ }} + {\text{ }}1}}\]
\[{g^{ - 1}}\;\left( z \right){\text{ }} = \dfrac{{{\text{ }}z}}{{z{\text{ }} + {\text{ }}1}}{\text{ }}\]
Expressing in the terms of $x$,
\[{g^{ - 1}}\;\left( x \right){\text{ }} = \dfrac{{{\text{ }}x{\text{ }}}}{{x{\text{ }} + {\text{1}}}}{\text{ }}\]
Now we will find $fo{g^{ - 1}}(x)$:
\[{\left( {fog} \right)^{ - 1}}\;\left( x \right){\text{ }} = {\text{ }}{g^{ - 1}}\;({f^{ - 1}}\;\left( x \right))\]
\[{g^{ - 1}}\;\left( {\dfrac{x}{{1 - x}}} \right) = \dfrac{{\dfrac{x}{{1{\text{ }}-{\text{ }}x}}}}{{1 + \dfrac{x}{{1{\text{ }}-{\text{ }}x}}}}\]
\[{g^{ - 1}}\;\left( {\dfrac{x}{{1 - x}}} \right) = \dfrac{{\dfrac{x}{{1{\text{ }}-{\text{ }}x}}}}{{\dfrac{{1 - x + x}}{{1{\text{ }}-{\text{ }}x}}}}\]
\[{g^{ - 1}}\;\left( {\dfrac{x}{{1 - x}}} \right) = \dfrac{{\dfrac{x}{{1{\text{ }}-{\text{ }}x}}}}{{\dfrac{1}{{1{\text{ }}-{\text{ }}x}}}}\]
\[{g^{ - 1}}\;\left( {\dfrac{x}{{1 - x}}} \right) = x\]
Hence, $fo{g^{ - 1}}(x) = x$. So, option (A) is correct.
Note:
The composite functions are not commutative that means that:
$fog \ne gof$,
The order is important and thus if we had to find $fo{g^{ - 1}}$ the values would have been different.
$fog = f(g(x))$
But we have to find the inverse of this composite function its inverse will be written as:
\[{\left( {fog} \right)^{ - 1}}\;\left( x \right){\text{ }} = {\text{ }}({g^{ - 1}}\;o{\text{ }}{f^{ - 1}}){\text{ }}\left( x \right)\]
That means we will find first the inverse of the two given function and find $fo{g^{ - 1}}(x)$
Complete step by step answer:
We are given :$f(x) = \dfrac{x}{{1 + x}}$
And $g(x) = \dfrac{x}{{1 - x}}$
We have to find the $fo{g^{ - 1}}(x)$.
Since: \[{\left( {fog} \right)^{ - 1}}\;\left( x \right){\text{ }} = {\text{ }}({g^{ - 1}}\;o{\text{ }}{f^{ - 1}}){\text{ }}\left( x \right)\]
We will find the inverses of both the function:
Inverse of Function $f(x)$:
$f(x) = y = \dfrac{x}{{1 + x}}$
$ \Rightarrow y(x + 1) = x$
$ \Rightarrow x = yx + y$
To find inverse we try to express this function in terms of $y$ instead of $x$
\[ \Rightarrow x{\text{ }}\left( {1{\text{ }}-{\text{ }}y} \right){\text{ }} = {\text{ }}y\]
\[ \Rightarrow x{\text{ }} = \dfrac{{{\text{ }}y}}{{{\text{ }}\left[ {1{\text{ }}-{\text{ }}y} \right]}}{\text{ }}\]
\[{f^{ - 1}}\;\left( y \right){\text{ }} = \dfrac{{{\text{ }}y}}{{\left[ {1{\text{ }}-{\text{ }}y} \right]}}{\text{ }}\]
\[{f^{ - 1}}\;\left( x \right){\text{ }} = {\text{ }}\dfrac{{x{\text{ }}}}{{1 - x}}\]
The inverse of function $g(x)$
Let \[z{\text{ }} = {\text{ }}g{\text{ }}\left( x \right){\text{ }} = \dfrac{{{\text{ }}x}}{{\left[ {1{\text{ }}-{\text{ }}x} \right]}}{\text{ }}\]
\[ \Rightarrow z{\text{ }}-{\text{ }}zx{\text{ }} = {\text{ }}x\]
\[ \Rightarrow x{\text{ }}\left( {z{\text{ }} + {\text{ }}1} \right){\text{ }} = {\text{ }}z\]
\[ \Rightarrow x{\text{ }} = \dfrac{{{\text{ }}z{\text{ }}}}{{z{\text{ }} + {\text{ }}1}}\]
\[{g^{ - 1}}\;\left( z \right){\text{ }} = \dfrac{{{\text{ }}z}}{{z{\text{ }} + {\text{ }}1}}{\text{ }}\]
Expressing in the terms of $x$,
\[{g^{ - 1}}\;\left( x \right){\text{ }} = \dfrac{{{\text{ }}x{\text{ }}}}{{x{\text{ }} + {\text{1}}}}{\text{ }}\]
Now we will find $fo{g^{ - 1}}(x)$:
\[{\left( {fog} \right)^{ - 1}}\;\left( x \right){\text{ }} = {\text{ }}{g^{ - 1}}\;({f^{ - 1}}\;\left( x \right))\]
\[{g^{ - 1}}\;\left( {\dfrac{x}{{1 - x}}} \right) = \dfrac{{\dfrac{x}{{1{\text{ }}-{\text{ }}x}}}}{{1 + \dfrac{x}{{1{\text{ }}-{\text{ }}x}}}}\]
\[{g^{ - 1}}\;\left( {\dfrac{x}{{1 - x}}} \right) = \dfrac{{\dfrac{x}{{1{\text{ }}-{\text{ }}x}}}}{{\dfrac{{1 - x + x}}{{1{\text{ }}-{\text{ }}x}}}}\]
\[{g^{ - 1}}\;\left( {\dfrac{x}{{1 - x}}} \right) = \dfrac{{\dfrac{x}{{1{\text{ }}-{\text{ }}x}}}}{{\dfrac{1}{{1{\text{ }}-{\text{ }}x}}}}\]
\[{g^{ - 1}}\;\left( {\dfrac{x}{{1 - x}}} \right) = x\]
Hence, $fo{g^{ - 1}}(x) = x$. So, option (A) is correct.
Note:
The composite functions are not commutative that means that:
$fog \ne gof$,
The order is important and thus if we had to find $fo{g^{ - 1}}$ the values would have been different.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

