
Let \[f\] and \[g\] be continuous functions on the interval \[\left[ 0,a \right]\], such that \[f\left( x \right)=f\left( a-x \right)\] and \[g\left( x \right)+g\left( a-x \right)=4\]. Then evaluate the integral \[\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\].
(a) \[4\int\limits_{0}^{a}{f\left( x \right)dx}\]
(b) \[2\int\limits_{0}^{a}{f\left( x \right)dx}\]
(c) \[-3\int\limits_{0}^{2}{f\left( x \right)dx}\]
(d) \[\int\limits_{0}^{a}{f\left( x \right)dx}\]
Answer
591k+ views
Hint: In this question, in order to evaluate the definite integral \[\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\] given that \[f\] and \[g\] be continuous functions on the interval \[\left[ 0,a \right]\], such that \[f\left( x \right)=f\left( a-x \right)\] and \[g\left( x \right)+g\left( a-x \right)=4\]. We will use the property of the definite integral that \[\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}\] in the integral \[\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\] to get a simplified form of the integral. We will then evaluate the same in order to get the desired answer.
Complete step by step answer:
We are given that \[f\] and \[g\] be continuous functions on the interval \[\left[ 0,a \right]\].
The function \[f\] satisfies the equation given by \[f\left( x \right)=f\left( a-x \right)...........(1)\].
And the function \[g\] satisfies the equation \[g\left( x \right)+g\left( a-x \right)=4..............(2)\].
Let us suppose that \[I\] denote the integral \[\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\].
That is, let \[I=\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\].
Since we know the property of the definite integral that \[\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}\] .
Using this in the integral \[I=\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\], we will have
\[\begin{align}
& I=\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx} \\
& =\int\limits_{0}^{a}{f\left( a-x \right)g\left( a-x \right)dx}
\end{align}\]
Now from equation (2), we have
\[g\left( a-x \right)=4-g\left( x \right)............(4)\]
On substituting the value of equation (4) in the above integral, we will get
\[\begin{align}
& I=\int\limits_{0}^{a}{f\left( a-x \right)g\left( a-x \right)dx} \\
& =\int\limits_{0}^{a}{f\left( a-x \right)\left( 4-g\left( x \right) \right)dx}
\end{align}\]
We know split the above integral to get
\[\begin{align}
& I=\int\limits_{0}^{a}{f\left( a-x \right)\left( 4-g\left( x \right) \right)dx} \\
& =4\int\limits_{0}^{a}{f\left( a-x \right)dx}-\int\limits_{0}^{a}{f\left( a-x \right)g\left( x \right)dx}
\end{align}\]
Now using equation (1) in the above integral, we will have
\[\begin{align}
& I=4\int\limits_{0}^{a}{f\left( a-x \right)dx}-\int\limits_{0}^{a}{f\left( a-x \right)g\left( x \right)dx} \\
& =4\int\limits_{0}^{a}{f\left( x \right)dx}-\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}
\end{align}\]
Using the fact that \[I=\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\] in the above equation we will get
\[\begin{align}
& I=4\int\limits_{0}^{a}{f\left( x \right)dx}-\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx} \\
& =4\int\limits_{0}^{a}{f\left( x \right)dx}-I
\end{align}\]
Now on taking \[I\] common at the left hand side of the above equation we get
\[2I=4\int\limits_{0}^{a}{f\left( x \right)dx}\]
We will now divide the above equation by 2 to get
\[\begin{align}
& I=\dfrac{4}{2}\int\limits_{0}^{a}{f\left( x \right)dx} \\
& =2\int\limits_{0}^{a}{f\left( x \right)dx}
\end{align}\]
Therefore we have \[\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}\].
So, the correct answer is “Option B”.
Note: In this problem, , in order to evaluate the definite integral \[\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\] given that \[f\] and \[g\] be continuous functions on the interval \[\left[ 0,a \right]\], such that \[f\left( x \right)=f\left( a-x \right)\] and \[g\left( x \right)+g\left( a-x \right)=4\], we are using the property that \[\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}\]. Please take care of the fact that we can use this property only in case of definite integrals where the integrand is continuous in the given range of lower limit and the upper limit of the integral.
Complete step by step answer:
We are given that \[f\] and \[g\] be continuous functions on the interval \[\left[ 0,a \right]\].
The function \[f\] satisfies the equation given by \[f\left( x \right)=f\left( a-x \right)...........(1)\].
And the function \[g\] satisfies the equation \[g\left( x \right)+g\left( a-x \right)=4..............(2)\].
Let us suppose that \[I\] denote the integral \[\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\].
That is, let \[I=\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\].
Since we know the property of the definite integral that \[\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}\] .
Using this in the integral \[I=\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\], we will have
\[\begin{align}
& I=\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx} \\
& =\int\limits_{0}^{a}{f\left( a-x \right)g\left( a-x \right)dx}
\end{align}\]
Now from equation (2), we have
\[g\left( a-x \right)=4-g\left( x \right)............(4)\]
On substituting the value of equation (4) in the above integral, we will get
\[\begin{align}
& I=\int\limits_{0}^{a}{f\left( a-x \right)g\left( a-x \right)dx} \\
& =\int\limits_{0}^{a}{f\left( a-x \right)\left( 4-g\left( x \right) \right)dx}
\end{align}\]
We know split the above integral to get
\[\begin{align}
& I=\int\limits_{0}^{a}{f\left( a-x \right)\left( 4-g\left( x \right) \right)dx} \\
& =4\int\limits_{0}^{a}{f\left( a-x \right)dx}-\int\limits_{0}^{a}{f\left( a-x \right)g\left( x \right)dx}
\end{align}\]
Now using equation (1) in the above integral, we will have
\[\begin{align}
& I=4\int\limits_{0}^{a}{f\left( a-x \right)dx}-\int\limits_{0}^{a}{f\left( a-x \right)g\left( x \right)dx} \\
& =4\int\limits_{0}^{a}{f\left( x \right)dx}-\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}
\end{align}\]
Using the fact that \[I=\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\] in the above equation we will get
\[\begin{align}
& I=4\int\limits_{0}^{a}{f\left( x \right)dx}-\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx} \\
& =4\int\limits_{0}^{a}{f\left( x \right)dx}-I
\end{align}\]
Now on taking \[I\] common at the left hand side of the above equation we get
\[2I=4\int\limits_{0}^{a}{f\left( x \right)dx}\]
We will now divide the above equation by 2 to get
\[\begin{align}
& I=\dfrac{4}{2}\int\limits_{0}^{a}{f\left( x \right)dx} \\
& =2\int\limits_{0}^{a}{f\left( x \right)dx}
\end{align}\]
Therefore we have \[\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}\].
So, the correct answer is “Option B”.
Note: In this problem, , in order to evaluate the definite integral \[\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)dx}\] given that \[f\] and \[g\] be continuous functions on the interval \[\left[ 0,a \right]\], such that \[f\left( x \right)=f\left( a-x \right)\] and \[g\left( x \right)+g\left( a-x \right)=4\], we are using the property that \[\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}\]. Please take care of the fact that we can use this property only in case of definite integrals where the integrand is continuous in the given range of lower limit and the upper limit of the integral.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

