
Let $ {E_1}(r) $ , $ {E_2}(r) $ and $ {E_3}(r) $ be the respective electric fields at a distance $ r $ from a point charge $ Q $ , an infinitely long wire with constant linear charge density $ \lambda $ and an infinite plane with uniform surface charge density $ \sigma $ . If $ {E_1}({r_0}) = {E_2}({r_0}) = {E_3}({r_0}) $ at a distance $ {r_0} $ , then
(A) $ Q = 4\sigma \pi r_0^2 $
(B) $ {r_0} = \dfrac{\lambda }{{2\pi \sigma }} $
(C) $ {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) $
(D) $ {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 4{E_3}\left( {\dfrac{{{r_0}}}{2}} \right) $
Answer
568.5k+ views
Hint Equate equal expressions in pairs. Find the relationship between the charge distributions at distance $ {r_0} $ and at distance $ \dfrac{{{r_0}}}{2} $ i.e. for point charge, find the relationship between $ {E_1}({r_0}) $ and $ {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) $ . Likewise for the other charge distributions.
Formula used: $ {E_1}\left( {{r_0}} \right) = \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} $ where $ Q $ is charge, $ {\varepsilon _o} $ is the permittivity of free space and $ {r_0} $ is the distance from the charge
$\Rightarrow {E_2}({r_0}) = \dfrac{\lambda }{{2\pi {\varepsilon _0}{r_0}}} $ and $ {E_3}({r_0}) = \dfrac{\sigma }{{2{\varepsilon _o}}} $ , where $ \lambda $ is the line charge density and $ \sigma $ is the surface charge density.
Complete step by step answer
Firstly, we write the equation of an electric field by a point charge $ Q $ at a distance $ {r_0} $ . This is given by
$\Rightarrow {E_1}({r_0}) = \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} $ where $ {\varepsilon _o} $ is the permittivity of free space.
Similarly, we write the equation of an electric field for an infinite line charge of density $ \lambda $ at a distance $ {r_0} $ . This is given by
$\Rightarrow {E_2}({r_0}) = \dfrac{\lambda }{{2\pi {\varepsilon _o}{r_0}}} $
Finally,we write the equation of an electric field for an infinite surface charge of density $ \sigma $ at a distance $ {r_0} $ . This is written as
$\Rightarrow {E_3}({r_0}) = \dfrac{\sigma }{{2{\varepsilon _o}}} $
According to the question, all three equations are equal. Thus, we could equate any pair so as to simplify and compare with the options.
For option A, we equate $ {E_1} $ and $ {E_2} $ . Doing this we get,
$\Rightarrow \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} = \dfrac{\sigma }{{2{\varepsilon _o}}} $
To make $ Q $ subject of the formula, multiply both sides by $ 4\pi {\varepsilon _o}r_0^2 $ , cancel out $ {\varepsilon _o} $ , and divide numerator and denominator by 2.
Hence, we get
$\Rightarrow Q = 2\sigma \pi r_0^2 $ .
This is not the same as option A. Thus, option A is incorrect.
For option B, equating $ {E_1} $ and $ {E_3} $ we get
$\Rightarrow \dfrac{\lambda }{{2\pi {\varepsilon _o}{r_0}}} = \dfrac{\sigma }{{2{\varepsilon _o}}} $
Cross multiplying and cancelling 2 and $ {\varepsilon _o} $ , we get
$\Rightarrow \lambda = \sigma \pi {r_0} $
Rearranging the above equation we get,
$\Rightarrow {r_0} = \dfrac{\lambda }{{\sigma \pi }} $ which is not equal to option B.
Therefore, option B is incorrect.
For option C, we need to find $ {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) $ and $ {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) $ .
We do this by simply replacing $ {r_0} $ with $ \dfrac{{{r_0}}}{2} $ in $ {E_1}({r_0}) = \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} $ .
This gives
$\Rightarrow {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{Q}{{4\pi {\varepsilon _o}\dfrac{{r_0^2}}{4}}} = 4\dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} \\
\Rightarrow {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 4{E_1}({r_0}) \\
$
Similarly,
$\Rightarrow {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{\lambda }{{2\pi {\varepsilon _o}\dfrac{{{r_0}}}{2}}} = 2\dfrac{\lambda }{{2\pi {\varepsilon _o}{r_0}}} \\
\Rightarrow {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}({r_0}) \\
$
This in turn, implies that
$\Rightarrow \dfrac{1}{2}{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = {E_2}({r_0}) = {E_1}({r_0}) $ .
Substituting $ \dfrac{1}{2}{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) $ for $ {E_1}({r_0}) $ in $ {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 4{E_1}\left( {{r_0}} \right) $ we get,
$ {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) $
This is equal to option (C).
Hence, the correct is option (C).
Note
Alternatively, in option C, from $ {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {{r_0}} \right) $ we can say that
$ {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 2 \times \dfrac{1}{4} \times {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) $ (since $ {E_2}({r_0}) = {E_1}({r_0}) $ ).
Simplifying further we get,
$ {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) $ .
Formula used: $ {E_1}\left( {{r_0}} \right) = \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} $ where $ Q $ is charge, $ {\varepsilon _o} $ is the permittivity of free space and $ {r_0} $ is the distance from the charge
$\Rightarrow {E_2}({r_0}) = \dfrac{\lambda }{{2\pi {\varepsilon _0}{r_0}}} $ and $ {E_3}({r_0}) = \dfrac{\sigma }{{2{\varepsilon _o}}} $ , where $ \lambda $ is the line charge density and $ \sigma $ is the surface charge density.
Complete step by step answer
Firstly, we write the equation of an electric field by a point charge $ Q $ at a distance $ {r_0} $ . This is given by
$\Rightarrow {E_1}({r_0}) = \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} $ where $ {\varepsilon _o} $ is the permittivity of free space.
Similarly, we write the equation of an electric field for an infinite line charge of density $ \lambda $ at a distance $ {r_0} $ . This is given by
$\Rightarrow {E_2}({r_0}) = \dfrac{\lambda }{{2\pi {\varepsilon _o}{r_0}}} $
Finally,we write the equation of an electric field for an infinite surface charge of density $ \sigma $ at a distance $ {r_0} $ . This is written as
$\Rightarrow {E_3}({r_0}) = \dfrac{\sigma }{{2{\varepsilon _o}}} $
According to the question, all three equations are equal. Thus, we could equate any pair so as to simplify and compare with the options.
For option A, we equate $ {E_1} $ and $ {E_2} $ . Doing this we get,
$\Rightarrow \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} = \dfrac{\sigma }{{2{\varepsilon _o}}} $
To make $ Q $ subject of the formula, multiply both sides by $ 4\pi {\varepsilon _o}r_0^2 $ , cancel out $ {\varepsilon _o} $ , and divide numerator and denominator by 2.
Hence, we get
$\Rightarrow Q = 2\sigma \pi r_0^2 $ .
This is not the same as option A. Thus, option A is incorrect.
For option B, equating $ {E_1} $ and $ {E_3} $ we get
$\Rightarrow \dfrac{\lambda }{{2\pi {\varepsilon _o}{r_0}}} = \dfrac{\sigma }{{2{\varepsilon _o}}} $
Cross multiplying and cancelling 2 and $ {\varepsilon _o} $ , we get
$\Rightarrow \lambda = \sigma \pi {r_0} $
Rearranging the above equation we get,
$\Rightarrow {r_0} = \dfrac{\lambda }{{\sigma \pi }} $ which is not equal to option B.
Therefore, option B is incorrect.
For option C, we need to find $ {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) $ and $ {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) $ .
We do this by simply replacing $ {r_0} $ with $ \dfrac{{{r_0}}}{2} $ in $ {E_1}({r_0}) = \dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} $ .
This gives
$\Rightarrow {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{Q}{{4\pi {\varepsilon _o}\dfrac{{r_0^2}}{4}}} = 4\dfrac{Q}{{4\pi {\varepsilon _o}r_0^2}} \\
\Rightarrow {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 4{E_1}({r_0}) \\
$
Similarly,
$\Rightarrow {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = \dfrac{\lambda }{{2\pi {\varepsilon _o}\dfrac{{{r_0}}}{2}}} = 2\dfrac{\lambda }{{2\pi {\varepsilon _o}{r_0}}} \\
\Rightarrow {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}({r_0}) \\
$
This in turn, implies that
$\Rightarrow \dfrac{1}{2}{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = {E_2}({r_0}) = {E_1}({r_0}) $ .
Substituting $ \dfrac{1}{2}{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) $ for $ {E_1}({r_0}) $ in $ {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 4{E_1}\left( {{r_0}} \right) $ we get,
$ {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) $
This is equal to option (C).
Hence, the correct is option (C).
Note
Alternatively, in option C, from $ {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {{r_0}} \right) $ we can say that
$ {E_2}\left( {\dfrac{{{r_0}}}{2}} \right) = 2 \times \dfrac{1}{4} \times {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) $ (since $ {E_2}({r_0}) = {E_1}({r_0}) $ ).
Simplifying further we get,
$ {E_1}\left( {\dfrac{{{r_0}}}{2}} \right) = 2{E_2}\left( {\dfrac{{{r_0}}}{2}} \right) $ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

