
Let $d\in R$, and $A=\left[ \begin{matrix}
-2 & 4+d & \sin \theta -2 \\
1 & \sin \theta +2 & d \\
5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\
\end{matrix} \right]$, $\theta \in \left[ 0,2\pi \right]$. If the minimum value of det(A) is 8, then a value of d is?
(a) -7
(b) $2\left( \sqrt{2}+2 \right)$
(c) -5
(d) $2\left( \sqrt{2}+1 \right)$
Answer
511.2k+ views
Hint: First, by using the row transformation as ${{R}_{1}}\to {{R}_{1}}+{{R}_{3}}-2{{R}_{2}}$ to the determinant of the matrix A, we get the simple form. Then, by expanding the determinant along the first row, we get a solution of the determinant. Then, we can clearly see that determinant gives minimum value when $\theta =\dfrac{3\pi }{2}$ as $\theta \in \left[ 0,2\pi \right]$,then by substituting, we get the value of d.
Complete step-by-step answer:
In this question, we are supposed to find the value of d from the given condition that det(A) is 8 which is minimum for the given matrix A as:
$A=\left[ \begin{matrix}
-2 & 4+d & \sin \theta -2 \\
1 & \sin \theta +2 & d \\
5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\
\end{matrix} \right]$
So, before proceeding for this, we must write the matrix A in determinant form as:
$\det A=\left| \begin{matrix}
-2 & 4+d & \sin \theta -2 \\
1 & \sin \theta +2 & d \\
5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\
\end{matrix} \right|$
Now, by using the row transformation as ${{R}_{1}}\to {{R}_{1}}+{{R}_{3}}-2{{R}_{2}}$ to the determinant of the matrix A as:
$\det A=\left| \begin{matrix}
-2+5-2 & 4+d+2\sin \theta -d-2\sin \theta -4 & \sin \theta -2-\sin \theta +2+2d-2d \\
1 & \sin \theta +2 & d \\
5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\
\end{matrix} \right|$
Then, after solving row first, we get:
$\det A=\left| \begin{matrix}
1 & 0 & 0 \\
1 & \sin \theta +2 & d \\
5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\
\end{matrix} \right|$
Then, by expanding the determinant along first row, we get:
$1\left[ \left( \sin \theta +2 \right)\left( 2+2d-\sin \theta \right)-d\left( 2\sin \theta -d \right) \right]$
Then, by solving the above expression, we get:
$\begin{align}
& 4+4d-2\sin \theta +2\sin \theta +2d\sin \theta -{{\sin }^{2}}\theta -2d\sin \theta +{{d}^{2}} \\
& \Rightarrow {{d}^{2}}+4d+4-{{\sin }^{2}}\theta \\
\end{align}$
Now, we are given the condition in the question that we get the minimum value of the determinant of A when the determinant is minimum.
So, we can clearly see that determinant gives minimum value when $\theta =\dfrac{3\pi }{2}$ as $\theta \in \left[ 0,2\pi \right]$, which in turn gives the value as:
$\begin{align}
& {{\sin }^{2}}\left( \dfrac{3\pi }{2} \right)={{\left( -1 \right)}^{2}} \\
& \Rightarrow 1 \\
\end{align}$
Now, by equating the value of determinant to 8 and also substituting the value of ${{\sin }^{2}}\theta $ for minimum condition, we get:
$\begin{align}
& {{d}^{2}}+4d+4-1=8 \\
& \Rightarrow {{\left( d+2 \right)}^{2}}=9 \\
& \Rightarrow \left( d+2 \right)=\pm 3 \\
\end{align}$
Then, by using the above condition, we can get two values of d as:
$\begin{align}
& d=3-2 \\
& \Rightarrow d=1 \\
\end{align}$ or $\begin{align}
& d=-3-2 \\
& \Rightarrow d=-5 \\
\end{align}$
So, we get the values of d as 1 or -5.
So, the correct answer is “Option c”.
Note: Now, to solve these types of questions we need to know some of the basic formulas for the perfect square and condition of determinants. So, there is no compulsion that we expand along the first row, we can expand along any row or column to get the same result. Moreover, the formula used for perfect square is ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$.
Complete step-by-step answer:
In this question, we are supposed to find the value of d from the given condition that det(A) is 8 which is minimum for the given matrix A as:
$A=\left[ \begin{matrix}
-2 & 4+d & \sin \theta -2 \\
1 & \sin \theta +2 & d \\
5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\
\end{matrix} \right]$
So, before proceeding for this, we must write the matrix A in determinant form as:
$\det A=\left| \begin{matrix}
-2 & 4+d & \sin \theta -2 \\
1 & \sin \theta +2 & d \\
5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\
\end{matrix} \right|$
Now, by using the row transformation as ${{R}_{1}}\to {{R}_{1}}+{{R}_{3}}-2{{R}_{2}}$ to the determinant of the matrix A as:
$\det A=\left| \begin{matrix}
-2+5-2 & 4+d+2\sin \theta -d-2\sin \theta -4 & \sin \theta -2-\sin \theta +2+2d-2d \\
1 & \sin \theta +2 & d \\
5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\
\end{matrix} \right|$
Then, after solving row first, we get:
$\det A=\left| \begin{matrix}
1 & 0 & 0 \\
1 & \sin \theta +2 & d \\
5 & 2\sin \theta -d & \left( -\sin \theta \right)+2+2d \\
\end{matrix} \right|$
Then, by expanding the determinant along first row, we get:
$1\left[ \left( \sin \theta +2 \right)\left( 2+2d-\sin \theta \right)-d\left( 2\sin \theta -d \right) \right]$
Then, by solving the above expression, we get:
$\begin{align}
& 4+4d-2\sin \theta +2\sin \theta +2d\sin \theta -{{\sin }^{2}}\theta -2d\sin \theta +{{d}^{2}} \\
& \Rightarrow {{d}^{2}}+4d+4-{{\sin }^{2}}\theta \\
\end{align}$
Now, we are given the condition in the question that we get the minimum value of the determinant of A when the determinant is minimum.
So, we can clearly see that determinant gives minimum value when $\theta =\dfrac{3\pi }{2}$ as $\theta \in \left[ 0,2\pi \right]$, which in turn gives the value as:
$\begin{align}
& {{\sin }^{2}}\left( \dfrac{3\pi }{2} \right)={{\left( -1 \right)}^{2}} \\
& \Rightarrow 1 \\
\end{align}$
Now, by equating the value of determinant to 8 and also substituting the value of ${{\sin }^{2}}\theta $ for minimum condition, we get:
$\begin{align}
& {{d}^{2}}+4d+4-1=8 \\
& \Rightarrow {{\left( d+2 \right)}^{2}}=9 \\
& \Rightarrow \left( d+2 \right)=\pm 3 \\
\end{align}$
Then, by using the above condition, we can get two values of d as:
$\begin{align}
& d=3-2 \\
& \Rightarrow d=1 \\
\end{align}$ or $\begin{align}
& d=-3-2 \\
& \Rightarrow d=-5 \\
\end{align}$
So, we get the values of d as 1 or -5.
So, the correct answer is “Option c”.
Note: Now, to solve these types of questions we need to know some of the basic formulas for the perfect square and condition of determinants. So, there is no compulsion that we expand along the first row, we can expand along any row or column to get the same result. Moreover, the formula used for perfect square is ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE
