
Let $\alpha ,\beta $ denote the cube roots of unity other than 1. Let $s=\sum\limits_{n=0}^{2}{{{\left( -1 \right)}^{n}}{{\left( \dfrac{\alpha }{\beta } \right)}^{n}}}$ .Then the value of s is
(a) either $-2\omega $ or $-2{{\omega }^{2}}$
(b) either $-2\omega $ or $2{{\omega }^{2}}$
(c) either $2\omega $ or $-2{{\omega }^{2}}$
(d) either $2\omega $ or $2{{\omega }^{2}}$
Answer
514.2k+ views
Hint: Cube roots of infinity are given as $1,\omega ,{{\omega }^{2}}$ .Take two cases by supposing value of $\alpha $ and $\beta $ as $\omega $ and ${{\omega }^{2}}$ and another case by supposing $\alpha $ and $\beta $ as ${{\omega }^{2}}$ and $\omega $ respectively. Use the relation among the cube roots of unity, given as
${{\omega }^{3}}=1$ and $1+\omega +{{\omega }^{2}}=0$
Simplify the given expression to get the value of it.
Complete step-by-step answer:
As we know the cube roots of unity are given as $1,\omega ,{{\omega }^{2}};$ where $\omega $ and ${{\omega }^{2}}$ are given as
$\omega =\dfrac{-1+\sqrt{3}i}{2},{{\omega }^{2}}=\dfrac{-1-\sqrt{3}i}{2}$
Now it is given that $\alpha ,\beta $ is denoting cube roots of unity other than ‘1’. So, $\alpha $ and $\beta $ can take values $\omega $ and ${{\omega }^{2}}$ or ${{\omega }^{2}}$ and $\omega $ .The relation among the cube roots of unity is given as
\[\begin{align}
& {{\omega }^{3}}=1.......\left( i \right) \\
& 1+\omega +{{\omega }^{2}}=0.........\left( ii \right) \\
\end{align}\]
So, there are two possibility of $\left( \alpha ,\beta \right)$ i.e. $\omega $ and ${{\omega }^{2}}$ or ${{\omega }^{2}}$ and $\omega $ .
Hence, we need to observe two cases here.
Case 1:
$\alpha =\omega $ and $\beta ={{\omega }^{2}}$
So, we get value of s as
$s=\sum\limits_{n=0}^{2}{{{\left( -1 \right)}^{n}}{{\left( \dfrac{\alpha }{\beta } \right)}^{n}}}$
Now, we can write s as
\[\begin{align}
& s={{\left( -1 \right)}^{0}}{{\left( \dfrac{\alpha }{\beta } \right)}^{0}}+{{\left( -1 \right)}^{1}}{{\left( \dfrac{\alpha }{\beta } \right)}^{1}}+{{\left( -1 \right)}^{2}}{{\left( \dfrac{\alpha }{\beta } \right)}^{2}} \\
& s=1-\dfrac{\alpha }{\beta }+{{\left( \dfrac{\alpha }{\beta } \right)}^{0}} \\
\end{align}\]
Now, we can put values of $\alpha $ and $\beta $ to the above equation, we get
$\begin{align}
& s=1-\dfrac{\omega }{{{\omega }^{2}}}+{{\left( \dfrac{\omega }{{{\omega }^{2}}} \right)}^{2}} \\
& s=1-\dfrac{1}{\omega }+{{\left( \dfrac{1}{\omega } \right)}^{2}} \\
& s=1-\dfrac{1}{\omega }+\dfrac{1}{{{\omega }^{2}}}.............\left( iii \right) \\
\end{align}$
Now, we can replace 1 by ${{\omega }^{3}}$ to the above equation using the relation of the equation(i). So, we get
$\begin{align}
& s=1-\dfrac{{{\omega }^{3}}}{\omega }+\dfrac{{{\omega }^{3}}}{{{\omega }^{2}}} \\
& s=1-{{\omega }^{2}}+\omega \\
\end{align}$
Now, we can add and subtract ${{\omega }^{2}}$ to the above equation. Hence, we get
$\begin{align}
& s=1-{{\omega }^{2}}+\omega +{{\omega }^{2}}-{{\omega }^{2}} \\
& s=1+\omega +{{\omega }^{2}}-2{{\omega }^{2}} \\
\end{align}$
Now, we can replace $1+\omega +{{\omega }^{2}}$ by 0 from the relation given in equation(ii). So, we get
$\begin{align}
& s=0-2{{\omega }^{2}} \\
& s=-2{{\omega }^{2}}........\left( iv \right) \\
\end{align}$
Case 2: $\alpha ={{\omega }^{2}}$ and $\beta =\omega $
Now, we can get value of s as
$s=1-\left( \dfrac{\alpha }{\beta } \right)+{{\left( \dfrac{\alpha }{\beta } \right)}^{2}}$
Putting the values of $\alpha $ and $\beta $ in the above equation, we get
\[\begin{align}
& s=1-\left( \dfrac{{{\omega }^{2}}}{\omega } \right)+{{\left( \dfrac{{{\omega }^{2}}}{\omega } \right)}^{2}} \\
& s=1-\omega +{{\left( \omega \right)}^{2}}=1-\omega +{{\omega }^{2}} \\
\end{align}\]
Now, we can add and subtract $'\omega '$ to the above equation. We get
$\begin{align}
& s=1-\omega +{{\omega }^{2}}-\omega +\omega \\
& s=1+\omega +{{\omega }^{2}}-2\omega \\
\end{align}$
Now, we can use the relation of equation (ii) and hence can replace $1+\omega +{{\omega }^{2}}$ by 0 in the above equation. So, we get
$\begin{align}
& s=0-2\omega =-2\omega \\
& s=-2\omega \\
\end{align}$
Hence, two positive values of the given expression ‘s’ are $-2\omega $ and $-2{{\omega }^{2}}$ .
So, option(a) is the correct answer.
Note: One may put the direct values of $\alpha $ and $\beta $ to the given expression i.e. value of $\alpha $ and $\beta $as $\dfrac{-1-\sqrt{3}i}{2}$ and $\dfrac{-1+\sqrt{3}i}{2}$ or vice-versa as well. But it will make the expression complex and may not be easy for some of the students. Answer will remain same by this approach as well, but try to always use $\omega $ and ${{\omega }^{2}}$ not their values, because we know the relations between them i.e. ${{\omega }^{3}}=1$ and $1+\omega +{{\omega }^{2}}=0$. So, take care of it, with these kinds of questions.
Don’t miss any of the cases, otherwise you will not get multiple possible values of the given expression.
${{\omega }^{3}}=1$ and $1+\omega +{{\omega }^{2}}=0$
Simplify the given expression to get the value of it.
Complete step-by-step answer:
As we know the cube roots of unity are given as $1,\omega ,{{\omega }^{2}};$ where $\omega $ and ${{\omega }^{2}}$ are given as
$\omega =\dfrac{-1+\sqrt{3}i}{2},{{\omega }^{2}}=\dfrac{-1-\sqrt{3}i}{2}$
Now it is given that $\alpha ,\beta $ is denoting cube roots of unity other than ‘1’. So, $\alpha $ and $\beta $ can take values $\omega $ and ${{\omega }^{2}}$ or ${{\omega }^{2}}$ and $\omega $ .The relation among the cube roots of unity is given as
\[\begin{align}
& {{\omega }^{3}}=1.......\left( i \right) \\
& 1+\omega +{{\omega }^{2}}=0.........\left( ii \right) \\
\end{align}\]
So, there are two possibility of $\left( \alpha ,\beta \right)$ i.e. $\omega $ and ${{\omega }^{2}}$ or ${{\omega }^{2}}$ and $\omega $ .
Hence, we need to observe two cases here.
Case 1:
$\alpha =\omega $ and $\beta ={{\omega }^{2}}$
So, we get value of s as
$s=\sum\limits_{n=0}^{2}{{{\left( -1 \right)}^{n}}{{\left( \dfrac{\alpha }{\beta } \right)}^{n}}}$
Now, we can write s as
\[\begin{align}
& s={{\left( -1 \right)}^{0}}{{\left( \dfrac{\alpha }{\beta } \right)}^{0}}+{{\left( -1 \right)}^{1}}{{\left( \dfrac{\alpha }{\beta } \right)}^{1}}+{{\left( -1 \right)}^{2}}{{\left( \dfrac{\alpha }{\beta } \right)}^{2}} \\
& s=1-\dfrac{\alpha }{\beta }+{{\left( \dfrac{\alpha }{\beta } \right)}^{0}} \\
\end{align}\]
Now, we can put values of $\alpha $ and $\beta $ to the above equation, we get
$\begin{align}
& s=1-\dfrac{\omega }{{{\omega }^{2}}}+{{\left( \dfrac{\omega }{{{\omega }^{2}}} \right)}^{2}} \\
& s=1-\dfrac{1}{\omega }+{{\left( \dfrac{1}{\omega } \right)}^{2}} \\
& s=1-\dfrac{1}{\omega }+\dfrac{1}{{{\omega }^{2}}}.............\left( iii \right) \\
\end{align}$
Now, we can replace 1 by ${{\omega }^{3}}$ to the above equation using the relation of the equation(i). So, we get
$\begin{align}
& s=1-\dfrac{{{\omega }^{3}}}{\omega }+\dfrac{{{\omega }^{3}}}{{{\omega }^{2}}} \\
& s=1-{{\omega }^{2}}+\omega \\
\end{align}$
Now, we can add and subtract ${{\omega }^{2}}$ to the above equation. Hence, we get
$\begin{align}
& s=1-{{\omega }^{2}}+\omega +{{\omega }^{2}}-{{\omega }^{2}} \\
& s=1+\omega +{{\omega }^{2}}-2{{\omega }^{2}} \\
\end{align}$
Now, we can replace $1+\omega +{{\omega }^{2}}$ by 0 from the relation given in equation(ii). So, we get
$\begin{align}
& s=0-2{{\omega }^{2}} \\
& s=-2{{\omega }^{2}}........\left( iv \right) \\
\end{align}$
Case 2: $\alpha ={{\omega }^{2}}$ and $\beta =\omega $
Now, we can get value of s as
$s=1-\left( \dfrac{\alpha }{\beta } \right)+{{\left( \dfrac{\alpha }{\beta } \right)}^{2}}$
Putting the values of $\alpha $ and $\beta $ in the above equation, we get
\[\begin{align}
& s=1-\left( \dfrac{{{\omega }^{2}}}{\omega } \right)+{{\left( \dfrac{{{\omega }^{2}}}{\omega } \right)}^{2}} \\
& s=1-\omega +{{\left( \omega \right)}^{2}}=1-\omega +{{\omega }^{2}} \\
\end{align}\]
Now, we can add and subtract $'\omega '$ to the above equation. We get
$\begin{align}
& s=1-\omega +{{\omega }^{2}}-\omega +\omega \\
& s=1+\omega +{{\omega }^{2}}-2\omega \\
\end{align}$
Now, we can use the relation of equation (ii) and hence can replace $1+\omega +{{\omega }^{2}}$ by 0 in the above equation. So, we get
$\begin{align}
& s=0-2\omega =-2\omega \\
& s=-2\omega \\
\end{align}$
Hence, two positive values of the given expression ‘s’ are $-2\omega $ and $-2{{\omega }^{2}}$ .
So, option(a) is the correct answer.
Note: One may put the direct values of $\alpha $ and $\beta $ to the given expression i.e. value of $\alpha $ and $\beta $as $\dfrac{-1-\sqrt{3}i}{2}$ and $\dfrac{-1+\sqrt{3}i}{2}$ or vice-versa as well. But it will make the expression complex and may not be easy for some of the students. Answer will remain same by this approach as well, but try to always use $\omega $ and ${{\omega }^{2}}$ not their values, because we know the relations between them i.e. ${{\omega }^{3}}=1$ and $1+\omega +{{\omega }^{2}}=0$. So, take care of it, with these kinds of questions.
Don’t miss any of the cases, otherwise you will not get multiple possible values of the given expression.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
