
Let $ABC$ is an equilateral triangle of side \[10m\] and $D$ is the midpoint of $BC$ . Charges of $ + 100, - 100{\text{ and }} + 75\mu C$ bs are placed at $B,C,D$ respectively. Find the force on a $ + 1\mu C$ charge placed at$A$ . (Give your answer in S.I. unit).
Answer
433.8k+ views
Hint:To solve this question firstly we will draw the figure and simplify the forces on $ + 1\mu C$ . We will calculate the net electric field along the x-axis and then net field of point $A$ , after net force acting on the point charger of $ + 1\mu C$ .
Formula used:
$E = \dfrac{{kq}}{{{r^2}}}$
$\Rightarrow F = qE$
Where, $E$ is the electric field strength,$k = 9 \times {10^9}$ is the electrostatic constant,$q$ is the charge, $r$ is the distance to the charge creating the field and $F$ is the force.
Complete step by step answer:
Now, we will calculate net field along -axis at point $A$
$E(x) = E(B)\operatorname{Cos} {60^ \circ } + E(C)\operatorname{Cos} {60^ \circ } \\
\Rightarrow E(y) = E(D) + E(B)\operatorname{Sin} {60^ \circ } - E(C)\operatorname{Sin} {60^ \circ } $
Given that,
$a = 10m$
$\Rightarrow Q(A) = 1\mu C$
$\Rightarrow Q(B) = 100\mu C$
$\Rightarrow Q(C) = - 100\mu C$
$\Rightarrow Q(D) = 75\mu C$
$\Rightarrow k = 9 \times {10^9}N{M^2}{\text{ }}{C^{ - 2}}$
Now electric field at $A$
$\because {E_A} = k\dfrac{{{Q_A}}}{{{a^2}}} \\
\Rightarrow {E_A} = 9 \times {10^9} \times \dfrac{{100 \times {{10}^{ - 6}}}}{{{{10}^2}}} \\
\Rightarrow {E_A} = 9000N{\text{ }}{C^{ - 1}} \\ $
Now, electric field at $B$ is $E(B)$
$\because {E_B} = k\dfrac{{{Q_B}}}{{{a^2}}} \\
\Rightarrow {E_B} = 9 \times {10^9} \times \dfrac{{100 \times {{10}^{ - 6}}}}{{{{10}^2}}} \\
\Rightarrow {E_B} = 9000N{\text{ }}{C^{ - 1}} \\ $
Now,electric field at $D$ is $E(D)$
$\because {E_D} = k\dfrac{{{Q_D}}}{{{a^2}}} \\
\Rightarrow {E_D} = 9 \times {10^9} \times \dfrac{{75 \times {{10}^{ - 6}}}}{{\dfrac{{3 \times {{10}^2}}}{4}}} \\
\Rightarrow {E_D} = 900 \times {10^{(9 - 6 - 2)}} \\
\Rightarrow {E_D} = 9000N{\text{ }}{C^{ - 1}} \\ $
So,
$E(x) = 9000\cos {60^ \circ } + 9000\cos {60^ \circ } \\
\Rightarrow E(x) = \left( {9000 \times \dfrac{1}{2}} \right) \times 2 \\
\Rightarrow E(x) = 9000N{\text{ }}{C^{ - 1}} \\ $
Now,
$E(y) = 9000 + 9000\cos {60^ \circ } + 9000\cos {60^ \circ } \\
\Rightarrow E(y) = 9000N{\text{ }}{C^{ - 1}} \\ $
So, net electric field at $A$
${E_n} = \sqrt {E_x^2 + E_y^2} \\
\Rightarrow {E_n} = \sqrt {{{(9000)}^2} + {{(9000)}^2}} \\
\Rightarrow {E_n} = 9000\sqrt 2 \\
\Rightarrow {E_n} = 12727.9N{\text{ }}{C^{ - 1}} \\ $
So, net force acting on point charge of $ + 1\mu C$ is Given By
$F = qE \\
\Rightarrow F = 1 \times {10^{ - 6}} \times 12727.9 \\
\therefore F = 12.73 \times {10^{ - 2}}N \\ $
Hence, the net force acting on $ + 1\mu C$ is $12.73 \times {10^{ - 2}}N$.
Note:While simplifying the forces don’t make mistakes in angles go step by step calculation to avoid mistakes. The repulsive or attractive interaction between any two charged bodies is called an electric force. Similar to any force, its impact and effects on the given body are described by Newton's laws of motion.
Formula used:
$E = \dfrac{{kq}}{{{r^2}}}$
$\Rightarrow F = qE$
Where, $E$ is the electric field strength,$k = 9 \times {10^9}$ is the electrostatic constant,$q$ is the charge, $r$ is the distance to the charge creating the field and $F$ is the force.
Complete step by step answer:

Now, we will calculate net field along -axis at point $A$
$E(x) = E(B)\operatorname{Cos} {60^ \circ } + E(C)\operatorname{Cos} {60^ \circ } \\
\Rightarrow E(y) = E(D) + E(B)\operatorname{Sin} {60^ \circ } - E(C)\operatorname{Sin} {60^ \circ } $
Given that,
$a = 10m$
$\Rightarrow Q(A) = 1\mu C$
$\Rightarrow Q(B) = 100\mu C$
$\Rightarrow Q(C) = - 100\mu C$
$\Rightarrow Q(D) = 75\mu C$
$\Rightarrow k = 9 \times {10^9}N{M^2}{\text{ }}{C^{ - 2}}$
Now electric field at $A$
$\because {E_A} = k\dfrac{{{Q_A}}}{{{a^2}}} \\
\Rightarrow {E_A} = 9 \times {10^9} \times \dfrac{{100 \times {{10}^{ - 6}}}}{{{{10}^2}}} \\
\Rightarrow {E_A} = 9000N{\text{ }}{C^{ - 1}} \\ $
Now, electric field at $B$ is $E(B)$
$\because {E_B} = k\dfrac{{{Q_B}}}{{{a^2}}} \\
\Rightarrow {E_B} = 9 \times {10^9} \times \dfrac{{100 \times {{10}^{ - 6}}}}{{{{10}^2}}} \\
\Rightarrow {E_B} = 9000N{\text{ }}{C^{ - 1}} \\ $
Now,electric field at $D$ is $E(D)$
$\because {E_D} = k\dfrac{{{Q_D}}}{{{a^2}}} \\
\Rightarrow {E_D} = 9 \times {10^9} \times \dfrac{{75 \times {{10}^{ - 6}}}}{{\dfrac{{3 \times {{10}^2}}}{4}}} \\
\Rightarrow {E_D} = 900 \times {10^{(9 - 6 - 2)}} \\
\Rightarrow {E_D} = 9000N{\text{ }}{C^{ - 1}} \\ $
So,
$E(x) = 9000\cos {60^ \circ } + 9000\cos {60^ \circ } \\
\Rightarrow E(x) = \left( {9000 \times \dfrac{1}{2}} \right) \times 2 \\
\Rightarrow E(x) = 9000N{\text{ }}{C^{ - 1}} \\ $
Now,
$E(y) = 9000 + 9000\cos {60^ \circ } + 9000\cos {60^ \circ } \\
\Rightarrow E(y) = 9000N{\text{ }}{C^{ - 1}} \\ $
So, net electric field at $A$
${E_n} = \sqrt {E_x^2 + E_y^2} \\
\Rightarrow {E_n} = \sqrt {{{(9000)}^2} + {{(9000)}^2}} \\
\Rightarrow {E_n} = 9000\sqrt 2 \\
\Rightarrow {E_n} = 12727.9N{\text{ }}{C^{ - 1}} \\ $
So, net force acting on point charge of $ + 1\mu C$ is Given By
$F = qE \\
\Rightarrow F = 1 \times {10^{ - 6}} \times 12727.9 \\
\therefore F = 12.73 \times {10^{ - 2}}N \\ $
Hence, the net force acting on $ + 1\mu C$ is $12.73 \times {10^{ - 2}}N$.
Note:While simplifying the forces don’t make mistakes in angles go step by step calculation to avoid mistakes. The repulsive or attractive interaction between any two charged bodies is called an electric force. Similar to any force, its impact and effects on the given body are described by Newton's laws of motion.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
