
Let $ABC$ is an equilateral triangle of side \[10m\] and $D$ is the midpoint of $BC$ . Charges of $ + 100, - 100{\text{ and }} + 75\mu C$ bs are placed at $B,C,D$ respectively. Find the force on a $ + 1\mu C$ charge placed at$A$ . (Give your answer in S.I. unit).
Answer
483.6k+ views
Hint:To solve this question firstly we will draw the figure and simplify the forces on $ + 1\mu C$ . We will calculate the net electric field along the x-axis and then net field of point $A$ , after net force acting on the point charger of $ + 1\mu C$ .
Formula used:
$E = \dfrac{{kq}}{{{r^2}}}$
$\Rightarrow F = qE$
Where, $E$ is the electric field strength,$k = 9 \times {10^9}$ is the electrostatic constant,$q$ is the charge, $r$ is the distance to the charge creating the field and $F$ is the force.
Complete step by step answer:
Now, we will calculate net field along -axis at point $A$
$E(x) = E(B)\operatorname{Cos} {60^ \circ } + E(C)\operatorname{Cos} {60^ \circ } \\
\Rightarrow E(y) = E(D) + E(B)\operatorname{Sin} {60^ \circ } - E(C)\operatorname{Sin} {60^ \circ } $
Given that,
$a = 10m$
$\Rightarrow Q(A) = 1\mu C$
$\Rightarrow Q(B) = 100\mu C$
$\Rightarrow Q(C) = - 100\mu C$
$\Rightarrow Q(D) = 75\mu C$
$\Rightarrow k = 9 \times {10^9}N{M^2}{\text{ }}{C^{ - 2}}$
Now electric field at $A$
$\because {E_A} = k\dfrac{{{Q_A}}}{{{a^2}}} \\
\Rightarrow {E_A} = 9 \times {10^9} \times \dfrac{{100 \times {{10}^{ - 6}}}}{{{{10}^2}}} \\
\Rightarrow {E_A} = 9000N{\text{ }}{C^{ - 1}} \\ $
Now, electric field at $B$ is $E(B)$
$\because {E_B} = k\dfrac{{{Q_B}}}{{{a^2}}} \\
\Rightarrow {E_B} = 9 \times {10^9} \times \dfrac{{100 \times {{10}^{ - 6}}}}{{{{10}^2}}} \\
\Rightarrow {E_B} = 9000N{\text{ }}{C^{ - 1}} \\ $
Now,electric field at $D$ is $E(D)$
$\because {E_D} = k\dfrac{{{Q_D}}}{{{a^2}}} \\
\Rightarrow {E_D} = 9 \times {10^9} \times \dfrac{{75 \times {{10}^{ - 6}}}}{{\dfrac{{3 \times {{10}^2}}}{4}}} \\
\Rightarrow {E_D} = 900 \times {10^{(9 - 6 - 2)}} \\
\Rightarrow {E_D} = 9000N{\text{ }}{C^{ - 1}} \\ $
So,
$E(x) = 9000\cos {60^ \circ } + 9000\cos {60^ \circ } \\
\Rightarrow E(x) = \left( {9000 \times \dfrac{1}{2}} \right) \times 2 \\
\Rightarrow E(x) = 9000N{\text{ }}{C^{ - 1}} \\ $
Now,
$E(y) = 9000 + 9000\cos {60^ \circ } + 9000\cos {60^ \circ } \\
\Rightarrow E(y) = 9000N{\text{ }}{C^{ - 1}} \\ $
So, net electric field at $A$
${E_n} = \sqrt {E_x^2 + E_y^2} \\
\Rightarrow {E_n} = \sqrt {{{(9000)}^2} + {{(9000)}^2}} \\
\Rightarrow {E_n} = 9000\sqrt 2 \\
\Rightarrow {E_n} = 12727.9N{\text{ }}{C^{ - 1}} \\ $
So, net force acting on point charge of $ + 1\mu C$ is Given By
$F = qE \\
\Rightarrow F = 1 \times {10^{ - 6}} \times 12727.9 \\
\therefore F = 12.73 \times {10^{ - 2}}N \\ $
Hence, the net force acting on $ + 1\mu C$ is $12.73 \times {10^{ - 2}}N$.
Note:While simplifying the forces don’t make mistakes in angles go step by step calculation to avoid mistakes. The repulsive or attractive interaction between any two charged bodies is called an electric force. Similar to any force, its impact and effects on the given body are described by Newton's laws of motion.
Formula used:
$E = \dfrac{{kq}}{{{r^2}}}$
$\Rightarrow F = qE$
Where, $E$ is the electric field strength,$k = 9 \times {10^9}$ is the electrostatic constant,$q$ is the charge, $r$ is the distance to the charge creating the field and $F$ is the force.
Complete step by step answer:
Now, we will calculate net field along -axis at point $A$
$E(x) = E(B)\operatorname{Cos} {60^ \circ } + E(C)\operatorname{Cos} {60^ \circ } \\
\Rightarrow E(y) = E(D) + E(B)\operatorname{Sin} {60^ \circ } - E(C)\operatorname{Sin} {60^ \circ } $
Given that,
$a = 10m$
$\Rightarrow Q(A) = 1\mu C$
$\Rightarrow Q(B) = 100\mu C$
$\Rightarrow Q(C) = - 100\mu C$
$\Rightarrow Q(D) = 75\mu C$
$\Rightarrow k = 9 \times {10^9}N{M^2}{\text{ }}{C^{ - 2}}$
Now electric field at $A$
$\because {E_A} = k\dfrac{{{Q_A}}}{{{a^2}}} \\
\Rightarrow {E_A} = 9 \times {10^9} \times \dfrac{{100 \times {{10}^{ - 6}}}}{{{{10}^2}}} \\
\Rightarrow {E_A} = 9000N{\text{ }}{C^{ - 1}} \\ $
Now, electric field at $B$ is $E(B)$
$\because {E_B} = k\dfrac{{{Q_B}}}{{{a^2}}} \\
\Rightarrow {E_B} = 9 \times {10^9} \times \dfrac{{100 \times {{10}^{ - 6}}}}{{{{10}^2}}} \\
\Rightarrow {E_B} = 9000N{\text{ }}{C^{ - 1}} \\ $
Now,electric field at $D$ is $E(D)$
$\because {E_D} = k\dfrac{{{Q_D}}}{{{a^2}}} \\
\Rightarrow {E_D} = 9 \times {10^9} \times \dfrac{{75 \times {{10}^{ - 6}}}}{{\dfrac{{3 \times {{10}^2}}}{4}}} \\
\Rightarrow {E_D} = 900 \times {10^{(9 - 6 - 2)}} \\
\Rightarrow {E_D} = 9000N{\text{ }}{C^{ - 1}} \\ $
So,
$E(x) = 9000\cos {60^ \circ } + 9000\cos {60^ \circ } \\
\Rightarrow E(x) = \left( {9000 \times \dfrac{1}{2}} \right) \times 2 \\
\Rightarrow E(x) = 9000N{\text{ }}{C^{ - 1}} \\ $
Now,
$E(y) = 9000 + 9000\cos {60^ \circ } + 9000\cos {60^ \circ } \\
\Rightarrow E(y) = 9000N{\text{ }}{C^{ - 1}} \\ $
So, net electric field at $A$
${E_n} = \sqrt {E_x^2 + E_y^2} \\
\Rightarrow {E_n} = \sqrt {{{(9000)}^2} + {{(9000)}^2}} \\
\Rightarrow {E_n} = 9000\sqrt 2 \\
\Rightarrow {E_n} = 12727.9N{\text{ }}{C^{ - 1}} \\ $
So, net force acting on point charge of $ + 1\mu C$ is Given By
$F = qE \\
\Rightarrow F = 1 \times {10^{ - 6}} \times 12727.9 \\
\therefore F = 12.73 \times {10^{ - 2}}N \\ $
Hence, the net force acting on $ + 1\mu C$ is $12.73 \times {10^{ - 2}}N$.
Note:While simplifying the forces don’t make mistakes in angles go step by step calculation to avoid mistakes. The repulsive or attractive interaction between any two charged bodies is called an electric force. Similar to any force, its impact and effects on the given body are described by Newton's laws of motion.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

