
Let a function $f:R\to R$ be a differentiable function satisfying $f'\left( 3 \right)+f'\left( 2 \right)=0$ . Then $\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right)}^{\dfrac{1}{x}}}$ is equal to
Answer
595.5k+ views
Hint: Use the formula $a={{e}^{{{\log }_{e}}a}}$ followed by the use of the property $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\log }_{e}}\left( 1+x \right)}{x}=1$ . Then use the l-hospital’s rule to further simplify the resultant expression you get. Once you have eliminated all removable terms, put the limit and use the relation $f'\left( 3 \right)+f'\left( 2 \right)=0$ given in the question to reach the answer.
Complete step-by-step answer:
In the expression given in the question, if we put the limit and check, then we will find that the expression turns out to be of the form ${{1}^{\infty }}$, which is an indeterminate form.
So, using the formula $a={{e}^{{{\log }_{e}}a}}$ in our expression, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right)}^{\dfrac{1}{x}}}$
$={{e}^{\log {{\left( \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right) \right)}^{\dfrac{1}{x}}}}}$
Now, we know that limit inside the log can be taken outside it and $\log {{a}^{b}}=b\log a$ . If we use this in our expression, we get
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\log {{\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right)}^{\dfrac{1}{x}}}}}\]
$={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}{{\log }_{e}}\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right)}}$
Now we will add 1 and subtract 1 from the part inside the log. On doing so, we get
$={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}{{\log }_{e}}\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)}-1+1 \right)}}$
$={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}{{\log }_{e}}\left( \dfrac{1+f(3+x)-f(3)-1-f\left( 2-x \right)+f\left( 2 \right)}{1+f\left( 2-x \right)-f\left( 2 \right)}+1 \right)}}={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}{{\log }_{e}}\left( \dfrac{f(3+x)-f(3)-f\left( 2-x \right)+f\left( 2 \right)}{1+f\left( 2-x \right)-f\left( 2 \right)}+1 \right)}}$
Now we will divide and multiply the numerator and the denominator with the same term and apply the formula $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\log }_{e}}\left( 1+x \right)}{x}=1$, which will give:
$={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}\times \dfrac{f(3+x)-f(3)-f\left( 2-x \right)+f\left( 2 \right)}{1+f\left( 2-x \right)-f\left( 2 \right)}\times \dfrac{1+f\left( 2-x \right)-f\left( 2 \right)}{f(3+x)-f(3)-f\left( 2-x \right)+f\left( 2 \right)}\times {{\log }_{e}}\left( \dfrac{1+f(3+x)-f(3)-1-f\left( 2-x \right)+f\left( 2 \right)}{1+f\left( 2-x \right)-f\left( 2 \right)}+1 \right)}}$
$={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}\left( \dfrac{f(3+x)-f(3)-f\left( 2-x \right)+f\left( 2 \right)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right)}}$
Now as $\dfrac{0}{0}$ form, applying l-hospital’s rule, which states that if a function is of the form $\dfrac{0}{0}$, then differentiate the numerator and the denominator separately to eliminate the indeterminacy. So, we get
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }}}^{\dfrac{\left( f'(3+x)+f'\left( 2-x \right) \right)\left( 1+f\left( 2-x \right)-f\left( 2 \right) \right)+\left( f(3+x)-f(3)-f\left( 2-x \right)+f\left( 2 \right) \right)f'\left( 2-x \right)}{{{\left( 1+f\left( 2-x \right)-f\left( 2 \right) \right)}^{2}}}}\]
Now on putting the limit, we get
\[={{e}^{\dfrac{0}{1}}}={{e}^{0}}=1\]
Therefore, the answer to the above question is 1.
Note: Whenever you come across the forms $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ always give a try to l-hospital’s rule as this may give you the answer in the fastest possible manner. Also, keep a habit of checking the indeterminate forms of the expressions before starting with the questions of limit as this helps you to select the shortest possible way to reach the answer.
Complete step-by-step answer:
In the expression given in the question, if we put the limit and check, then we will find that the expression turns out to be of the form ${{1}^{\infty }}$, which is an indeterminate form.
So, using the formula $a={{e}^{{{\log }_{e}}a}}$ in our expression, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right)}^{\dfrac{1}{x}}}$
$={{e}^{\log {{\left( \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right) \right)}^{\dfrac{1}{x}}}}}$
Now, we know that limit inside the log can be taken outside it and $\log {{a}^{b}}=b\log a$ . If we use this in our expression, we get
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\log {{\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right)}^{\dfrac{1}{x}}}}}\]
$={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}{{\log }_{e}}\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right)}}$
Now we will add 1 and subtract 1 from the part inside the log. On doing so, we get
$={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}{{\log }_{e}}\left( \dfrac{1+f(3+x)-f(3)}{1+f\left( 2-x \right)-f\left( 2 \right)}-1+1 \right)}}$
$={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}{{\log }_{e}}\left( \dfrac{1+f(3+x)-f(3)-1-f\left( 2-x \right)+f\left( 2 \right)}{1+f\left( 2-x \right)-f\left( 2 \right)}+1 \right)}}={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}{{\log }_{e}}\left( \dfrac{f(3+x)-f(3)-f\left( 2-x \right)+f\left( 2 \right)}{1+f\left( 2-x \right)-f\left( 2 \right)}+1 \right)}}$
Now we will divide and multiply the numerator and the denominator with the same term and apply the formula $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\log }_{e}}\left( 1+x \right)}{x}=1$, which will give:
$={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}\times \dfrac{f(3+x)-f(3)-f\left( 2-x \right)+f\left( 2 \right)}{1+f\left( 2-x \right)-f\left( 2 \right)}\times \dfrac{1+f\left( 2-x \right)-f\left( 2 \right)}{f(3+x)-f(3)-f\left( 2-x \right)+f\left( 2 \right)}\times {{\log }_{e}}\left( \dfrac{1+f(3+x)-f(3)-1-f\left( 2-x \right)+f\left( 2 \right)}{1+f\left( 2-x \right)-f\left( 2 \right)}+1 \right)}}$
$={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }\dfrac{1}{x}\left( \dfrac{f(3+x)-f(3)-f\left( 2-x \right)+f\left( 2 \right)}{1+f\left( 2-x \right)-f\left( 2 \right)} \right)}}$
Now as $\dfrac{0}{0}$ form, applying l-hospital’s rule, which states that if a function is of the form $\dfrac{0}{0}$, then differentiate the numerator and the denominator separately to eliminate the indeterminacy. So, we get
\[={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\text{ }}}^{\dfrac{\left( f'(3+x)+f'\left( 2-x \right) \right)\left( 1+f\left( 2-x \right)-f\left( 2 \right) \right)+\left( f(3+x)-f(3)-f\left( 2-x \right)+f\left( 2 \right) \right)f'\left( 2-x \right)}{{{\left( 1+f\left( 2-x \right)-f\left( 2 \right) \right)}^{2}}}}\]
Now on putting the limit, we get
\[={{e}^{\dfrac{0}{1}}}={{e}^{0}}=1\]
Therefore, the answer to the above question is 1.
Note: Whenever you come across the forms $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ always give a try to l-hospital’s rule as this may give you the answer in the fastest possible manner. Also, keep a habit of checking the indeterminate forms of the expressions before starting with the questions of limit as this helps you to select the shortest possible way to reach the answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

