
Let A be any 3x3 invertible matrix. Then which one of the following is not always true?
$\begin{align}
& \text{a) }adj\left( adj\left( A \right) \right)\text{ }=\text{ }\left| A \right|\cdot {{\left( adj(A) \right)}^{-1}} \\
& \text{b) }adj\left( adj\left( A \right) \right)\text{ }=\text{ }{{\left| A \right|}^{2}}\cdot {{\left( adj(A) \right)}^{-1}} \\
& \text{c) }adj\left( adj\left( A \right) \right)\text{ }=\text{ }\left| A \right|\cdot A \\
& \text{d) }adj\left( A \right)\text{ }=\text{ }\left| A \right|\cdot {{A}^{-1}} \\
\end{align}$
Answer
574.2k+ views
Hint: In this, to check that which option does not hold we will use the following two properties of Adjoint of the matrix. Adjoint of a matrix is a matrix formed by the cofactors of the matrix.
\[\begin{align}
& \text{1) A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left( \text{adj}\left( \text{A} \right) \right)\text{A=}\left| \text{A} \right|\centerdot \text{I} \\
& \text{2) }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{n-1}} \\
\end{align}\]
Complete step by step answer:
Given that the matrix A is 3x3 invertible matrix then,
\[\left( \text{adj}\left( \text{A} \right) \right)\text{A=}\left| \text{A} \right|\centerdot \text{I}....\text{(1)}\]
Replacing matrix A by adj(A) in equation (1), we get
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I}....\text{(2)}\]
Since the matrix is 3x3 \[\Rightarrow \text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{2}}\]
Equation (2), becomes
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right)\text{=}{{\left| \text{A} \right|}^{2}}\cdot \text{I}....\text{(3)}\]
Since A is invertible matrix implies that adj(A) is a invertible matrix.
Apply \[{{\left( \text{adj}\left( \text{A} \right) \right)}^{\text{-1}}}\]on both sides of equation (3), we get\\
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right){{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\text{=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
Since \[\text{adj}\left( \text{A} \right){{\left( \text{adj}\left( \text{A} \right) \right)}^{\text{-1}}}=\text{I}\]
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{I=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
\[\text{adj}\left( \text{adj}\left( \text{A} \right) \right)\text{=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
This proves that option b is always true.
From property (1) of adjoint of matrix we get
\[\text{A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{I}....\text{(3)}\]
Replacing matrix A by adj(A) in equation (3), we get
\[\text{adj}\left( \text{A} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I}....\text{(4)}\]
Multiplying equation (4) matrix A from left side, we get
\[\text{A}\cdot \text{adj}\left( \text{A} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=A}\left\{ \left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I} \right\}\]
\[\left( \text{A}\cdot \text{adj}\left( \text{A} \right) \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\left\{ \text{A}\cdot \text{I} \right\}\]
From property (1), we get
\[\left( \left| \text{A} \right|\cdot \text{I} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\left\{ \text{A}\cdot \text{I} \right\}\]\\
\[\left| \text{A} \right|\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{A}\]
For 3x3 matrix property (2) is \[\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{2}}\]
\[\left| \text{A} \right|\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}{{\left| \text{A} \right|}^{2}}\cdot \text{A}\]
By cancelling |A| form both sides, we get
\[\text{adj}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{A}\]\\
The option c is always true.
Since A is invertible implies \[{{\text{A}}^{\text{-1}}}\] exist.
Applying \[{{\text{A}}^{\text{-1}}}\] on both sides of equation (1), we get
\[\left( \text{adj}\left( \text{A} \right) \right)\text{A}\cdot {{\text{A}}^{-1}}\text{=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]
Since \[\text{A}\cdot {{\text{A}}^{-1}}\text{=I}\]
\[\Rightarrow \left( \text{adj}\left( \text{A} \right) \right)\text{I=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]
\[\Rightarrow \text{adj}\left( \text{A} \right)\text{=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]\\
This proves that option d is always true.
If the option b is always true implies that option a is always not true
So, the correct answer is “Option A”.
Note: proof of property (2) is given below for nxn matrix.
Let A be any nxn matrix.
By property (1), we have
\[\text{A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{I}\]
Taking determinants on both sides, we get
\[\text{ }\!\!|\!\!\text{ A}\left( \text{adj}\left( \text{A} \right) \right)\text{ }\!\!|\!\!\text{ = }\!\!|\!\!\text{ }\left| \text{A} \right|\cdot \text{I }\!\!|\!\!\text{ }\]
Since det(AB) = det(A)det(B)
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }\!\!|\!\!\text{ }\left| \text{A} \right|\cdot \text{I }\!\!|\!\!\text{ }\]
For nxn matrix, det(kA) = kndet(A), where k is constant number
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\text{ }\!\!|\!\!\text{ I }\!\!|\!\!\text{ }\]
Since the determinant of the identity matrix is 1.
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\cdot 1\]
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\]
By cancelling |A| on both sides, we get
\[\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n-1}}\]
\[\begin{align}
& \text{1) A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left( \text{adj}\left( \text{A} \right) \right)\text{A=}\left| \text{A} \right|\centerdot \text{I} \\
& \text{2) }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{n-1}} \\
\end{align}\]
Complete step by step answer:
Given that the matrix A is 3x3 invertible matrix then,
\[\left( \text{adj}\left( \text{A} \right) \right)\text{A=}\left| \text{A} \right|\centerdot \text{I}....\text{(1)}\]
Replacing matrix A by adj(A) in equation (1), we get
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I}....\text{(2)}\]
Since the matrix is 3x3 \[\Rightarrow \text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{2}}\]
Equation (2), becomes
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right)\text{=}{{\left| \text{A} \right|}^{2}}\cdot \text{I}....\text{(3)}\]
Since A is invertible matrix implies that adj(A) is a invertible matrix.
Apply \[{{\left( \text{adj}\left( \text{A} \right) \right)}^{\text{-1}}}\]on both sides of equation (3), we get\\
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right){{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\text{=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
Since \[\text{adj}\left( \text{A} \right){{\left( \text{adj}\left( \text{A} \right) \right)}^{\text{-1}}}=\text{I}\]
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{I=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
\[\text{adj}\left( \text{adj}\left( \text{A} \right) \right)\text{=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
This proves that option b is always true.
From property (1) of adjoint of matrix we get
\[\text{A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{I}....\text{(3)}\]
Replacing matrix A by adj(A) in equation (3), we get
\[\text{adj}\left( \text{A} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I}....\text{(4)}\]
Multiplying equation (4) matrix A from left side, we get
\[\text{A}\cdot \text{adj}\left( \text{A} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=A}\left\{ \left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I} \right\}\]
\[\left( \text{A}\cdot \text{adj}\left( \text{A} \right) \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\left\{ \text{A}\cdot \text{I} \right\}\]
From property (1), we get
\[\left( \left| \text{A} \right|\cdot \text{I} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\left\{ \text{A}\cdot \text{I} \right\}\]\\
\[\left| \text{A} \right|\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{A}\]
For 3x3 matrix property (2) is \[\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{2}}\]
\[\left| \text{A} \right|\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}{{\left| \text{A} \right|}^{2}}\cdot \text{A}\]
By cancelling |A| form both sides, we get
\[\text{adj}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{A}\]\\
The option c is always true.
Since A is invertible implies \[{{\text{A}}^{\text{-1}}}\] exist.
Applying \[{{\text{A}}^{\text{-1}}}\] on both sides of equation (1), we get
\[\left( \text{adj}\left( \text{A} \right) \right)\text{A}\cdot {{\text{A}}^{-1}}\text{=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]
Since \[\text{A}\cdot {{\text{A}}^{-1}}\text{=I}\]
\[\Rightarrow \left( \text{adj}\left( \text{A} \right) \right)\text{I=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]
\[\Rightarrow \text{adj}\left( \text{A} \right)\text{=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]\\
This proves that option d is always true.
If the option b is always true implies that option a is always not true
So, the correct answer is “Option A”.
Note: proof of property (2) is given below for nxn matrix.
Let A be any nxn matrix.
By property (1), we have
\[\text{A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{I}\]
Taking determinants on both sides, we get
\[\text{ }\!\!|\!\!\text{ A}\left( \text{adj}\left( \text{A} \right) \right)\text{ }\!\!|\!\!\text{ = }\!\!|\!\!\text{ }\left| \text{A} \right|\cdot \text{I }\!\!|\!\!\text{ }\]
Since det(AB) = det(A)det(B)
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }\!\!|\!\!\text{ }\left| \text{A} \right|\cdot \text{I }\!\!|\!\!\text{ }\]
For nxn matrix, det(kA) = kndet(A), where k is constant number
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\text{ }\!\!|\!\!\text{ I }\!\!|\!\!\text{ }\]
Since the determinant of the identity matrix is 1.
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\cdot 1\]
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\]
By cancelling |A| on both sides, we get
\[\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n-1}}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

