
Let A be any 3x3 invertible matrix. Then which one of the following is not always true?
$\begin{align}
& \text{a) }adj\left( adj\left( A \right) \right)\text{ }=\text{ }\left| A \right|\cdot {{\left( adj(A) \right)}^{-1}} \\
& \text{b) }adj\left( adj\left( A \right) \right)\text{ }=\text{ }{{\left| A \right|}^{2}}\cdot {{\left( adj(A) \right)}^{-1}} \\
& \text{c) }adj\left( adj\left( A \right) \right)\text{ }=\text{ }\left| A \right|\cdot A \\
& \text{d) }adj\left( A \right)\text{ }=\text{ }\left| A \right|\cdot {{A}^{-1}} \\
\end{align}$
Answer
508.2k+ views
Hint: In this, to check that which option does not hold we will use the following two properties of Adjoint of the matrix. Adjoint of a matrix is a matrix formed by the cofactors of the matrix.
\[\begin{align}
& \text{1) A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left( \text{adj}\left( \text{A} \right) \right)\text{A=}\left| \text{A} \right|\centerdot \text{I} \\
& \text{2) }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{n-1}} \\
\end{align}\]
Complete step by step answer:
Given that the matrix A is 3x3 invertible matrix then,
\[\left( \text{adj}\left( \text{A} \right) \right)\text{A=}\left| \text{A} \right|\centerdot \text{I}....\text{(1)}\]
Replacing matrix A by adj(A) in equation (1), we get
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I}....\text{(2)}\]
Since the matrix is 3x3 \[\Rightarrow \text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{2}}\]
Equation (2), becomes
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right)\text{=}{{\left| \text{A} \right|}^{2}}\cdot \text{I}....\text{(3)}\]
Since A is invertible matrix implies that adj(A) is a invertible matrix.
Apply \[{{\left( \text{adj}\left( \text{A} \right) \right)}^{\text{-1}}}\]on both sides of equation (3), we get\\
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right){{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\text{=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
Since \[\text{adj}\left( \text{A} \right){{\left( \text{adj}\left( \text{A} \right) \right)}^{\text{-1}}}=\text{I}\]
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{I=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
\[\text{adj}\left( \text{adj}\left( \text{A} \right) \right)\text{=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
This proves that option b is always true.
From property (1) of adjoint of matrix we get
\[\text{A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{I}....\text{(3)}\]
Replacing matrix A by adj(A) in equation (3), we get
\[\text{adj}\left( \text{A} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I}....\text{(4)}\]
Multiplying equation (4) matrix A from left side, we get
\[\text{A}\cdot \text{adj}\left( \text{A} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=A}\left\{ \left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I} \right\}\]
\[\left( \text{A}\cdot \text{adj}\left( \text{A} \right) \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\left\{ \text{A}\cdot \text{I} \right\}\]
From property (1), we get
\[\left( \left| \text{A} \right|\cdot \text{I} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\left\{ \text{A}\cdot \text{I} \right\}\]\\
\[\left| \text{A} \right|\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{A}\]
For 3x3 matrix property (2) is \[\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{2}}\]
\[\left| \text{A} \right|\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}{{\left| \text{A} \right|}^{2}}\cdot \text{A}\]
By cancelling |A| form both sides, we get
\[\text{adj}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{A}\]\\
The option c is always true.
Since A is invertible implies \[{{\text{A}}^{\text{-1}}}\] exist.
Applying \[{{\text{A}}^{\text{-1}}}\] on both sides of equation (1), we get
\[\left( \text{adj}\left( \text{A} \right) \right)\text{A}\cdot {{\text{A}}^{-1}}\text{=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]
Since \[\text{A}\cdot {{\text{A}}^{-1}}\text{=I}\]
\[\Rightarrow \left( \text{adj}\left( \text{A} \right) \right)\text{I=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]
\[\Rightarrow \text{adj}\left( \text{A} \right)\text{=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]\\
This proves that option d is always true.
If the option b is always true implies that option a is always not true
So, the correct answer is “Option A”.
Note: proof of property (2) is given below for nxn matrix.
Let A be any nxn matrix.
By property (1), we have
\[\text{A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{I}\]
Taking determinants on both sides, we get
\[\text{ }\!\!|\!\!\text{ A}\left( \text{adj}\left( \text{A} \right) \right)\text{ }\!\!|\!\!\text{ = }\!\!|\!\!\text{ }\left| \text{A} \right|\cdot \text{I }\!\!|\!\!\text{ }\]
Since det(AB) = det(A)det(B)
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }\!\!|\!\!\text{ }\left| \text{A} \right|\cdot \text{I }\!\!|\!\!\text{ }\]
For nxn matrix, det(kA) = kndet(A), where k is constant number
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\text{ }\!\!|\!\!\text{ I }\!\!|\!\!\text{ }\]
Since the determinant of the identity matrix is 1.
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\cdot 1\]
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\]
By cancelling |A| on both sides, we get
\[\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n-1}}\]
\[\begin{align}
& \text{1) A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left( \text{adj}\left( \text{A} \right) \right)\text{A=}\left| \text{A} \right|\centerdot \text{I} \\
& \text{2) }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{n-1}} \\
\end{align}\]
Complete step by step answer:
Given that the matrix A is 3x3 invertible matrix then,
\[\left( \text{adj}\left( \text{A} \right) \right)\text{A=}\left| \text{A} \right|\centerdot \text{I}....\text{(1)}\]
Replacing matrix A by adj(A) in equation (1), we get
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I}....\text{(2)}\]
Since the matrix is 3x3 \[\Rightarrow \text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{2}}\]
Equation (2), becomes
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right)\text{=}{{\left| \text{A} \right|}^{2}}\cdot \text{I}....\text{(3)}\]
Since A is invertible matrix implies that adj(A) is a invertible matrix.
Apply \[{{\left( \text{adj}\left( \text{A} \right) \right)}^{\text{-1}}}\]on both sides of equation (3), we get\\
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{adj}\left( \text{A} \right){{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\text{=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
Since \[\text{adj}\left( \text{A} \right){{\left( \text{adj}\left( \text{A} \right) \right)}^{\text{-1}}}=\text{I}\]
\[\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{I=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
\[\text{adj}\left( \text{adj}\left( \text{A} \right) \right)\text{=}{{\left| \text{A} \right|}^{2}}{{\left( \text{adj}\left( \text{A} \right) \right)}^{-1}}\]
This proves that option b is always true.
From property (1) of adjoint of matrix we get
\[\text{A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{I}....\text{(3)}\]
Replacing matrix A by adj(A) in equation (3), we get
\[\text{adj}\left( \text{A} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I}....\text{(4)}\]
Multiplying equation (4) matrix A from left side, we get
\[\text{A}\cdot \text{adj}\left( \text{A} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=A}\left\{ \left| \text{adj}\left( \text{A} \right) \right|\cdot \text{I} \right\}\]
\[\left( \text{A}\cdot \text{adj}\left( \text{A} \right) \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\left\{ \text{A}\cdot \text{I} \right\}\]
From property (1), we get
\[\left( \left| \text{A} \right|\cdot \text{I} \right)\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\left\{ \text{A}\cdot \text{I} \right\}\]\\
\[\left| \text{A} \right|\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}\left| \text{adj}\left( \text{A} \right) \right|\cdot \text{A}\]
For 3x3 matrix property (2) is \[\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }{{\left| \text{A} \right|}^{2}}\]
\[\left| \text{A} \right|\left( \text{adj}\left( \text{adj}\left( \text{A} \right) \right) \right)\text{=}{{\left| \text{A} \right|}^{2}}\cdot \text{A}\]
By cancelling |A| form both sides, we get
\[\text{adj}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{A}\]\\
The option c is always true.
Since A is invertible implies \[{{\text{A}}^{\text{-1}}}\] exist.
Applying \[{{\text{A}}^{\text{-1}}}\] on both sides of equation (1), we get
\[\left( \text{adj}\left( \text{A} \right) \right)\text{A}\cdot {{\text{A}}^{-1}}\text{=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]
Since \[\text{A}\cdot {{\text{A}}^{-1}}\text{=I}\]
\[\Rightarrow \left( \text{adj}\left( \text{A} \right) \right)\text{I=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]
\[\Rightarrow \text{adj}\left( \text{A} \right)\text{=}\left| \text{A} \right|\cdot {{\text{A}}^{-1}}\]\\
This proves that option d is always true.
If the option b is always true implies that option a is always not true
So, the correct answer is “Option A”.
Note: proof of property (2) is given below for nxn matrix.
Let A be any nxn matrix.
By property (1), we have
\[\text{A}\left( \text{adj}\left( \text{A} \right) \right)\text{=}\left| \text{A} \right|\cdot \text{I}\]
Taking determinants on both sides, we get
\[\text{ }\!\!|\!\!\text{ A}\left( \text{adj}\left( \text{A} \right) \right)\text{ }\!\!|\!\!\text{ = }\!\!|\!\!\text{ }\left| \text{A} \right|\cdot \text{I }\!\!|\!\!\text{ }\]
Since det(AB) = det(A)det(B)
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ = }\!\!|\!\!\text{ }\left| \text{A} \right|\cdot \text{I }\!\!|\!\!\text{ }\]
For nxn matrix, det(kA) = kndet(A), where k is constant number
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\text{ }\!\!|\!\!\text{ I }\!\!|\!\!\text{ }\]
Since the determinant of the identity matrix is 1.
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\cdot 1\]
\[\text{ }\!\!|\!\!\text{ A }\!\!|\!\!\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n}}\]
By cancelling |A| on both sides, we get
\[\text{ }\!\!|\!\!\text{ adj}\left( \text{A} \right)\text{ }\!\!|\!\!\text{ =}{{\left| \text{A} \right|}^{n-1}}\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

What are the factors that influence the distribution class 12 social science CBSE

Identify the correct statement regarding cardiac activity class 12 biology CBSE
