
Let A be a square matrix all of whose entries are integers. Then, which one of the following is true?
A. If $\det A=\pm 1$, then ${{A}^{-1}}$ exists and all its entries are integers.
B. If $\det A=\pm 1$, then ${{A}^{-1}}$ need not exist.
C. If $\det A=\pm 1$, then ${{A}^{-1}}$ exists but all its entries are not necessarily integers.
D. if $\det A\ne \pm 1$, then ${{A}^{-1}}$ exists and all its entries are non-integers.
Answer
545.4k+ views
Hint: In this problem we need to find the correct option which is related to the given data. In the problem we have given that $A$ be a square matrix all of whose entries are integers. So, we will assume a square matrix of desired order and try to find the inverse of the matrix by calculating the values of $adj\left( A \right)$, $\left| A \right|$. From the values of ${{A}^{-1}}$, $\left| A \right|$ we will choose one correct option from the given options.
Complete step-by-step solution:
Given that the matrix $A$ is a square matrix all of whose entries are integers.
Let us assume the matrix $A$ as $A=\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]$
Now the determinant of the matrix $A$ will be
$\Rightarrow \left| A \right|=\left| \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right|$
We know that the value of $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=ad-cb$, hence the determinant of the matrix $A$ will be
$\begin{align}
& \Rightarrow \left| A \right|=-1\left( -1 \right)-0\left( 0 \right) \\
& \Rightarrow \left| A \right|=1 \\
\end{align}$
Here the value of $\left| A \right|$ is $1$. Now the value of $adj\left( A \right)$ will be
$\begin{align}
& \Rightarrow adj\left( A \right)=\left[ \begin{matrix}
-1 & -\left( 0 \right) \\
-\left( 0 \right) & -1 \\
\end{matrix} \right] \\
& \Rightarrow adj\left( A \right)=\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
\end{align}$
From the above values, the value of ${{A}^{-1}}$ will be
$\begin{align}
& \Rightarrow {{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right) \\
& \Rightarrow {{A}^{-1}}=\dfrac{1}{1}\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
& \Rightarrow {{A}^{-1}}=\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
\end{align}$
From the above value we can say that ‘If $\det A=\pm 1$, then ${{A}^{-1}}$ exists and all its entries are integers’.
Hence option – A is the correct one.
Note: For this problem we can directly write the answer without assuming the matrix because we have the formula for the inverse matrix as ${{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right)$. From this formula we can say that the inverse of an integer matrix should have integers entries.
Complete step-by-step solution:
Given that the matrix $A$ is a square matrix all of whose entries are integers.
Let us assume the matrix $A$ as $A=\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]$
Now the determinant of the matrix $A$ will be
$\Rightarrow \left| A \right|=\left| \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right|$
We know that the value of $\left| \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right|=ad-cb$, hence the determinant of the matrix $A$ will be
$\begin{align}
& \Rightarrow \left| A \right|=-1\left( -1 \right)-0\left( 0 \right) \\
& \Rightarrow \left| A \right|=1 \\
\end{align}$
Here the value of $\left| A \right|$ is $1$. Now the value of $adj\left( A \right)$ will be
$\begin{align}
& \Rightarrow adj\left( A \right)=\left[ \begin{matrix}
-1 & -\left( 0 \right) \\
-\left( 0 \right) & -1 \\
\end{matrix} \right] \\
& \Rightarrow adj\left( A \right)=\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
\end{align}$
From the above values, the value of ${{A}^{-1}}$ will be
$\begin{align}
& \Rightarrow {{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right) \\
& \Rightarrow {{A}^{-1}}=\dfrac{1}{1}\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
& \Rightarrow {{A}^{-1}}=\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right] \\
\end{align}$
From the above value we can say that ‘If $\det A=\pm 1$, then ${{A}^{-1}}$ exists and all its entries are integers’.
Hence option – A is the correct one.
Note: For this problem we can directly write the answer without assuming the matrix because we have the formula for the inverse matrix as ${{A}^{-1}}=\dfrac{1}{\left| A \right|}adj\left( A \right)$. From this formula we can say that the inverse of an integer matrix should have integers entries.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

