
Let A be a point on the line \[\vec{r}=\left( 1-3\mu \right)\hat{i}+\left( \mu -1 \right)\hat{j}+\left( 2+5\mu \right)\hat{k}\] and \[B\left( 3,2,6 \right)\] be a point in the space. Then the value of \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\]?
Answer
573.3k+ views
Hint: If \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] be two points on a line AB, then the equation of line AB is \[L:\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}}\]. We know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[ad+be+cf=0\]. By using these concepts, we can find the value of \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\].
Complete step by step answer:
From the question, we were given that to find the value \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\].
Let us assume a point \[A\left( \left( 1-3\mu \right),\left( \mu -1 \right),\left( 2+5\mu \right) \right)\] on the line \[\vec{r}=\left( 1-3\mu \right)\hat{i}+\left( \mu -1 \right)\hat{j}+\left( 2+5\mu \right)\hat{k}\]. We were also given a point \[B\left( 3,2,6 \right)\].
If \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] be two points on a line AB, then the equation of line AB is \[L:\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}}\].
So, now we should find a line equation AB which passes through point \[A\left( \left( 1-3\mu \right),\left( \mu -1 \right),\left( 2+5\mu \right) \right)\] and point \[B\left( 3,2,6 \right)\].
Now we should find the line equation AB.
\[\begin{align}
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{3-\left( 1-3\mu \right)}=\dfrac{y-\left( \mu -1 \right)}{2-\left( \mu -1 \right)}=\dfrac{z-\left( 2+5\mu \right)}{6-\left( 2+5\mu \right)} \\
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{3-1+3\mu }=\dfrac{y-\left( \mu -1 \right)}{2-\mu +1}=\dfrac{z-\left( 2+5\mu \right)}{6-2-5\mu } \\
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{2+3\mu }=\dfrac{y-\left( \mu -1 \right)}{3-\mu }=\dfrac{z-\left( 2+5\mu \right)}{4-5\mu } \\
\end{align}\]
We know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[ad+be+cf=0\].
From the question, it was given that the line equation AB is parallel to \[x-4y+3z=1\].
Then we get
\[\begin{align}
& \Rightarrow \left( 2+3\mu \right)\left( 1 \right)+\left( 3-\mu \right)\left( -4 \right)+\left( 4-5\mu \right)\left( 3 \right)=0 \\
& \Rightarrow 2+3\mu -12+4\mu +12-15\mu =0 \\
& \Rightarrow -8\mu +2=0 \\
& \Rightarrow 8\mu =2 \\
\end{align}\]
Now by cross multiplication, then we get
\[\begin{align}
& \Rightarrow \mu =\dfrac{2}{8} \\
& \Rightarrow \mu =\dfrac{1}{4}.....(1) \\
\end{align}\]
From equation (2), it is clear that the value of \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\] is equal to \[\dfrac{1}{4}\].
Note: Students may have a misconception that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[\dfrac{d}{a}=\dfrac{b}{e}=\dfrac{c}{f}\]. But we know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[ad+be+cf=0\]. So, students should have a clear view of the concept. Students should also know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is perpendicular to plane \[P:ax+by+cz+k=0\] if \[\dfrac{d}{a}=\dfrac{b}{e}=\dfrac{c}{f}\].
Complete step by step answer:
From the question, we were given that to find the value \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\].
Let us assume a point \[A\left( \left( 1-3\mu \right),\left( \mu -1 \right),\left( 2+5\mu \right) \right)\] on the line \[\vec{r}=\left( 1-3\mu \right)\hat{i}+\left( \mu -1 \right)\hat{j}+\left( 2+5\mu \right)\hat{k}\]. We were also given a point \[B\left( 3,2,6 \right)\].
If \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] be two points on a line AB, then the equation of line AB is \[L:\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}}\].
So, now we should find a line equation AB which passes through point \[A\left( \left( 1-3\mu \right),\left( \mu -1 \right),\left( 2+5\mu \right) \right)\] and point \[B\left( 3,2,6 \right)\].
Now we should find the line equation AB.
\[\begin{align}
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{3-\left( 1-3\mu \right)}=\dfrac{y-\left( \mu -1 \right)}{2-\left( \mu -1 \right)}=\dfrac{z-\left( 2+5\mu \right)}{6-\left( 2+5\mu \right)} \\
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{3-1+3\mu }=\dfrac{y-\left( \mu -1 \right)}{2-\mu +1}=\dfrac{z-\left( 2+5\mu \right)}{6-2-5\mu } \\
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{2+3\mu }=\dfrac{y-\left( \mu -1 \right)}{3-\mu }=\dfrac{z-\left( 2+5\mu \right)}{4-5\mu } \\
\end{align}\]
We know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[ad+be+cf=0\].
From the question, it was given that the line equation AB is parallel to \[x-4y+3z=1\].
Then we get
\[\begin{align}
& \Rightarrow \left( 2+3\mu \right)\left( 1 \right)+\left( 3-\mu \right)\left( -4 \right)+\left( 4-5\mu \right)\left( 3 \right)=0 \\
& \Rightarrow 2+3\mu -12+4\mu +12-15\mu =0 \\
& \Rightarrow -8\mu +2=0 \\
& \Rightarrow 8\mu =2 \\
\end{align}\]
Now by cross multiplication, then we get
\[\begin{align}
& \Rightarrow \mu =\dfrac{2}{8} \\
& \Rightarrow \mu =\dfrac{1}{4}.....(1) \\
\end{align}\]
From equation (2), it is clear that the value of \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\] is equal to \[\dfrac{1}{4}\].
Note: Students may have a misconception that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[\dfrac{d}{a}=\dfrac{b}{e}=\dfrac{c}{f}\]. But we know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[ad+be+cf=0\]. So, students should have a clear view of the concept. Students should also know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is perpendicular to plane \[P:ax+by+cz+k=0\] if \[\dfrac{d}{a}=\dfrac{b}{e}=\dfrac{c}{f}\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

