
Let A be a point on the line \[\vec{r}=\left( 1-3\mu \right)\hat{i}+\left( \mu -1 \right)\hat{j}+\left( 2+5\mu \right)\hat{k}\] and \[B\left( 3,2,6 \right)\] be a point in the space. Then the value of \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\]?
Answer
585.6k+ views
Hint: If \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] be two points on a line AB, then the equation of line AB is \[L:\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}}\]. We know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[ad+be+cf=0\]. By using these concepts, we can find the value of \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\].
Complete step by step answer:
From the question, we were given that to find the value \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\].
Let us assume a point \[A\left( \left( 1-3\mu \right),\left( \mu -1 \right),\left( 2+5\mu \right) \right)\] on the line \[\vec{r}=\left( 1-3\mu \right)\hat{i}+\left( \mu -1 \right)\hat{j}+\left( 2+5\mu \right)\hat{k}\]. We were also given a point \[B\left( 3,2,6 \right)\].
If \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] be two points on a line AB, then the equation of line AB is \[L:\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}}\].
So, now we should find a line equation AB which passes through point \[A\left( \left( 1-3\mu \right),\left( \mu -1 \right),\left( 2+5\mu \right) \right)\] and point \[B\left( 3,2,6 \right)\].
Now we should find the line equation AB.
\[\begin{align}
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{3-\left( 1-3\mu \right)}=\dfrac{y-\left( \mu -1 \right)}{2-\left( \mu -1 \right)}=\dfrac{z-\left( 2+5\mu \right)}{6-\left( 2+5\mu \right)} \\
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{3-1+3\mu }=\dfrac{y-\left( \mu -1 \right)}{2-\mu +1}=\dfrac{z-\left( 2+5\mu \right)}{6-2-5\mu } \\
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{2+3\mu }=\dfrac{y-\left( \mu -1 \right)}{3-\mu }=\dfrac{z-\left( 2+5\mu \right)}{4-5\mu } \\
\end{align}\]
We know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[ad+be+cf=0\].
From the question, it was given that the line equation AB is parallel to \[x-4y+3z=1\].
Then we get
\[\begin{align}
& \Rightarrow \left( 2+3\mu \right)\left( 1 \right)+\left( 3-\mu \right)\left( -4 \right)+\left( 4-5\mu \right)\left( 3 \right)=0 \\
& \Rightarrow 2+3\mu -12+4\mu +12-15\mu =0 \\
& \Rightarrow -8\mu +2=0 \\
& \Rightarrow 8\mu =2 \\
\end{align}\]
Now by cross multiplication, then we get
\[\begin{align}
& \Rightarrow \mu =\dfrac{2}{8} \\
& \Rightarrow \mu =\dfrac{1}{4}.....(1) \\
\end{align}\]
From equation (2), it is clear that the value of \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\] is equal to \[\dfrac{1}{4}\].
Note: Students may have a misconception that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[\dfrac{d}{a}=\dfrac{b}{e}=\dfrac{c}{f}\]. But we know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[ad+be+cf=0\]. So, students should have a clear view of the concept. Students should also know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is perpendicular to plane \[P:ax+by+cz+k=0\] if \[\dfrac{d}{a}=\dfrac{b}{e}=\dfrac{c}{f}\].
Complete step by step answer:
From the question, we were given that to find the value \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\].
Let us assume a point \[A\left( \left( 1-3\mu \right),\left( \mu -1 \right),\left( 2+5\mu \right) \right)\] on the line \[\vec{r}=\left( 1-3\mu \right)\hat{i}+\left( \mu -1 \right)\hat{j}+\left( 2+5\mu \right)\hat{k}\]. We were also given a point \[B\left( 3,2,6 \right)\].
If \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and \[B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)\] be two points on a line AB, then the equation of line AB is \[L:\dfrac{x-{{x}_{1}}}{{{x}_{2}}-{{x}_{1}}}=\dfrac{y-{{y}_{1}}}{{{y}_{2}}-{{y}_{1}}}=\dfrac{z-{{z}_{1}}}{{{z}_{2}}-{{z}_{1}}}\].
So, now we should find a line equation AB which passes through point \[A\left( \left( 1-3\mu \right),\left( \mu -1 \right),\left( 2+5\mu \right) \right)\] and point \[B\left( 3,2,6 \right)\].
Now we should find the line equation AB.
\[\begin{align}
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{3-\left( 1-3\mu \right)}=\dfrac{y-\left( \mu -1 \right)}{2-\left( \mu -1 \right)}=\dfrac{z-\left( 2+5\mu \right)}{6-\left( 2+5\mu \right)} \\
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{3-1+3\mu }=\dfrac{y-\left( \mu -1 \right)}{2-\mu +1}=\dfrac{z-\left( 2+5\mu \right)}{6-2-5\mu } \\
& \Rightarrow AB:\dfrac{x-\left( 1-3\mu \right)}{2+3\mu }=\dfrac{y-\left( \mu -1 \right)}{3-\mu }=\dfrac{z-\left( 2+5\mu \right)}{4-5\mu } \\
\end{align}\]
We know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[ad+be+cf=0\].
From the question, it was given that the line equation AB is parallel to \[x-4y+3z=1\].
Then we get
\[\begin{align}
& \Rightarrow \left( 2+3\mu \right)\left( 1 \right)+\left( 3-\mu \right)\left( -4 \right)+\left( 4-5\mu \right)\left( 3 \right)=0 \\
& \Rightarrow 2+3\mu -12+4\mu +12-15\mu =0 \\
& \Rightarrow -8\mu +2=0 \\
& \Rightarrow 8\mu =2 \\
\end{align}\]
Now by cross multiplication, then we get
\[\begin{align}
& \Rightarrow \mu =\dfrac{2}{8} \\
& \Rightarrow \mu =\dfrac{1}{4}.....(1) \\
\end{align}\]
From equation (2), it is clear that the value of \[\mu \] for which the vector \[A\vec{B}\] is parallel to the plane \[x-4y+3z=1\] is equal to \[\dfrac{1}{4}\].
Note: Students may have a misconception that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[\dfrac{d}{a}=\dfrac{b}{e}=\dfrac{c}{f}\]. But we know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is parallel to plane \[P:ax+by+cz+k=0\] if \[ad+be+cf=0\]. So, students should have a clear view of the concept. Students should also know that \[L:\dfrac{x-{{x}_{1}}}{d}=\dfrac{y-{{y}_{1}}}{e}=\dfrac{z-{{z}_{1}}}{f}\] is perpendicular to plane \[P:ax+by+cz+k=0\] if \[\dfrac{d}{a}=\dfrac{b}{e}=\dfrac{c}{f}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

