
Let A be a non-singular matrix of order $3\times 3$ whose entries are complex numbers which satisfy $2{{A}^{2}}=4A+{{A}^{3}}$, then which of the following is/are true.
(a) $\det \left( A \right)=-8$,
(b) $\det \left( adj\left( \dfrac{A}{2} \right) \right)=1$,
(c) $adjA={{A}^{2}}$,
(d) $tr\left( {{\left( A-2I \right)}^{3}} \right)=24$.
Answer
554.1k+ views
Hint: We start solving the problem by multiplying $2{{A}^{2}}=4A+{{A}^{3}}$ with ${{A}^{-1}}$ and using ${{A}^{2}}=2A+\dfrac{{{A}^{3}}}{2}$ to get matrix ${{A}^{3}}$. We then use the facts that $\det \left( xB \right)={{x}^{n}}\det \left( B \right)$, where ‘n’ is the order of the matrix, $\det \left( {{A}^{n}} \right)={{\left( \det \left( A \right) \right)}^{n}}$ and $\det \left( I \right)=1$ to find value of $\det \left( A \right)$. We then use the fact $\det \left( adj\left( A \right) \right)={{\left( \det \left( A \right) \right)}^{n-1}}$ to find $\det \left( adj\left( \dfrac{A}{2} \right) \right)$. We then multiply the obtained ${{A}^{3}}$ with ${{A}^{-1}}$ on both sides and use the fact $adj\left( A \right)=\left| A \right|{{A}^{-1}}$ to find $adj\left( A \right)$. Now, consider ${{\left( A-2I \right)}^{3}}$ and use the necessary relations to find the matrix and then find the trace of it.
Complete step by step answer:
According to the problem, we are given that A is a non-singular matrix of order $3\times 3$ whose entries are complex numbers and satisfies $2{{A}^{2}}=4A+{{A}^{3}}$. We need to find which of the given options are true.
Since A is a non-singular matrix, it will have an inverse.
Now, let us multiply both sides of $2{{A}^{2}}=4A+{{A}^{3}}$ with ${{A}^{-1}}$.
So, we get $2A.A.{{A}^{-1}}=4A.{{A}^{-1}}+A.A.A.{{A}^{-1}}$.
We know that $A.{{A}^{-1}}=I$. So, we get $2A.I=4I+A.A.I$.
$\Rightarrow 2A=4I+{{A}^{2}}$ ---(1).
But we have $2{{A}^{2}}=4A+{{A}^{3}}$, which gives ${{A}^{2}}=2A+\dfrac{{{A}^{3}}}{2}$. We substitute this in equation (1).
$\Rightarrow 2A=4I+2A+\dfrac{{{A}^{3}}}{2}$.
$\Rightarrow \dfrac{{{A}^{3}}}{2}=-4I$.
$\Rightarrow {{A}^{3}}=-8I$ ---(2).
Now, we have $\dfrac{{{A}^{3}}}{8}=-I$. Let us apply determinant on both sides.
$\Rightarrow \det \left( \dfrac{{{A}^{3}}}{8} \right)=\det \left( -I \right)$.
We know that $\det \left( xB \right)={{x}^{n}}\det \left( B \right)$, where ‘n’ is the order of the matrix.
$\Rightarrow \det \left( {{\left( \dfrac{A}{2} \right)}^{3}} \right)={{\left( -1 \right)}^{3}}\det \left( I \right)$.
We know that $\det \left( {{A}^{n}} \right)={{\left( \det \left( A \right) \right)}^{n}}$ and $\det \left( I \right)=1$.
So, we get $\det {{\left( \dfrac{A}{2} \right)}^{3}}=-1$.
$\Rightarrow \det \left( \dfrac{A}{2} \right)=-1$ ---(3).
$\Rightarrow {{\left( \dfrac{1}{2} \right)}^{3}}\times \det \left( A \right)=-1$.
$\Rightarrow \dfrac{1}{8}\times \det \left( A \right)=-1$.
$\Rightarrow \det \left( A \right)=-8$ ---(4).
We know that $\det \left( adj\left( A \right) \right)={{\left( \det \left( A \right) \right)}^{n-1}}$, where ‘n’ is the order of the matrix.
So, we get $\det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( \det \left( \dfrac{A}{2} \right) \right)}^{3-1}}$.
$\Rightarrow \det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( \det \left( \dfrac{A}{2} \right) \right)}^{2}}$.
From equation (3), we get $\det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( -1 \right)}^{2}}$.
$\Rightarrow \det \left( adj\left( \dfrac{A}{2} \right) \right)=1$ ---(5).
From equation (2), we have ${{A}^{3}}=-8I$. Let us multiply both sides with ${{A}^{-1}}$.
$\Rightarrow A.A.A.{{A}^{-1}}=-8I.{{A}^{-1}}$.
$\Rightarrow A.A.I=-8{{A}^{-1}}$.
From equation (4), we have ${{A}^{2}}=\left| A \right|{{A}^{-1}}$.
We know that $adj\left( A \right)=\left| A \right|{{A}^{-1}}$. So, we get ${{A}^{2}}=adj\left( A \right)$ ---(6).
Now, let us consider ${{\left( A-2I \right)}^{3}}$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-6{{A}^{2}}+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-3\left( 4A+{{A}^{3}} \right)+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-12A-3{{A}^{3}}+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=-2{{A}^{3}}-8I$.
From equation (2), we get ${{\left( A-2I \right)}^{3}}=-2\left( -8I \right)-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=16I-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=\left[ \begin{matrix}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8 \\
\end{matrix} \right]$.
$\Rightarrow tr\left( {{\left( A-2I \right)}^{3}} \right)=8+8+8=24$ ---(7).
From equations (4), (5), (6) and (7), we can see all the given options are true.
∴ The correct options for the given problem are (a), (b), (c) and (d).
Note: We can see that this problem contains a heavy amount of calculations, so we need to do each step carefully while solving this problem. We can also assume a matrix with complex numbers to solve this problem but that becomes hectic to make the calculations and get the solution. We can also take the complex cube roots of –1 but, we just need to check whether at least one of the solutions satisfy the options.
Complete step by step answer:
According to the problem, we are given that A is a non-singular matrix of order $3\times 3$ whose entries are complex numbers and satisfies $2{{A}^{2}}=4A+{{A}^{3}}$. We need to find which of the given options are true.
Since A is a non-singular matrix, it will have an inverse.
Now, let us multiply both sides of $2{{A}^{2}}=4A+{{A}^{3}}$ with ${{A}^{-1}}$.
So, we get $2A.A.{{A}^{-1}}=4A.{{A}^{-1}}+A.A.A.{{A}^{-1}}$.
We know that $A.{{A}^{-1}}=I$. So, we get $2A.I=4I+A.A.I$.
$\Rightarrow 2A=4I+{{A}^{2}}$ ---(1).
But we have $2{{A}^{2}}=4A+{{A}^{3}}$, which gives ${{A}^{2}}=2A+\dfrac{{{A}^{3}}}{2}$. We substitute this in equation (1).
$\Rightarrow 2A=4I+2A+\dfrac{{{A}^{3}}}{2}$.
$\Rightarrow \dfrac{{{A}^{3}}}{2}=-4I$.
$\Rightarrow {{A}^{3}}=-8I$ ---(2).
Now, we have $\dfrac{{{A}^{3}}}{8}=-I$. Let us apply determinant on both sides.
$\Rightarrow \det \left( \dfrac{{{A}^{3}}}{8} \right)=\det \left( -I \right)$.
We know that $\det \left( xB \right)={{x}^{n}}\det \left( B \right)$, where ‘n’ is the order of the matrix.
$\Rightarrow \det \left( {{\left( \dfrac{A}{2} \right)}^{3}} \right)={{\left( -1 \right)}^{3}}\det \left( I \right)$.
We know that $\det \left( {{A}^{n}} \right)={{\left( \det \left( A \right) \right)}^{n}}$ and $\det \left( I \right)=1$.
So, we get $\det {{\left( \dfrac{A}{2} \right)}^{3}}=-1$.
$\Rightarrow \det \left( \dfrac{A}{2} \right)=-1$ ---(3).
$\Rightarrow {{\left( \dfrac{1}{2} \right)}^{3}}\times \det \left( A \right)=-1$.
$\Rightarrow \dfrac{1}{8}\times \det \left( A \right)=-1$.
$\Rightarrow \det \left( A \right)=-8$ ---(4).
We know that $\det \left( adj\left( A \right) \right)={{\left( \det \left( A \right) \right)}^{n-1}}$, where ‘n’ is the order of the matrix.
So, we get $\det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( \det \left( \dfrac{A}{2} \right) \right)}^{3-1}}$.
$\Rightarrow \det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( \det \left( \dfrac{A}{2} \right) \right)}^{2}}$.
From equation (3), we get $\det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( -1 \right)}^{2}}$.
$\Rightarrow \det \left( adj\left( \dfrac{A}{2} \right) \right)=1$ ---(5).
From equation (2), we have ${{A}^{3}}=-8I$. Let us multiply both sides with ${{A}^{-1}}$.
$\Rightarrow A.A.A.{{A}^{-1}}=-8I.{{A}^{-1}}$.
$\Rightarrow A.A.I=-8{{A}^{-1}}$.
From equation (4), we have ${{A}^{2}}=\left| A \right|{{A}^{-1}}$.
We know that $adj\left( A \right)=\left| A \right|{{A}^{-1}}$. So, we get ${{A}^{2}}=adj\left( A \right)$ ---(6).
Now, let us consider ${{\left( A-2I \right)}^{3}}$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-6{{A}^{2}}+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-3\left( 4A+{{A}^{3}} \right)+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-12A-3{{A}^{3}}+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=-2{{A}^{3}}-8I$.
From equation (2), we get ${{\left( A-2I \right)}^{3}}=-2\left( -8I \right)-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=16I-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=\left[ \begin{matrix}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8 \\
\end{matrix} \right]$.
$\Rightarrow tr\left( {{\left( A-2I \right)}^{3}} \right)=8+8+8=24$ ---(7).
From equations (4), (5), (6) and (7), we can see all the given options are true.
∴ The correct options for the given problem are (a), (b), (c) and (d).
Note: We can see that this problem contains a heavy amount of calculations, so we need to do each step carefully while solving this problem. We can also assume a matrix with complex numbers to solve this problem but that becomes hectic to make the calculations and get the solution. We can also take the complex cube roots of –1 but, we just need to check whether at least one of the solutions satisfy the options.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

