
Let A be a non-singular matrix of order $3\times 3$ whose entries are complex numbers which satisfy $2{{A}^{2}}=4A+{{A}^{3}}$, then which of the following is/are true.
(a) $\det \left( A \right)=-8$,
(b) $\det \left( adj\left( \dfrac{A}{2} \right) \right)=1$,
(c) $adjA={{A}^{2}}$,
(d) $tr\left( {{\left( A-2I \right)}^{3}} \right)=24$.
Answer
565.8k+ views
Hint: We start solving the problem by multiplying $2{{A}^{2}}=4A+{{A}^{3}}$ with ${{A}^{-1}}$ and using ${{A}^{2}}=2A+\dfrac{{{A}^{3}}}{2}$ to get matrix ${{A}^{3}}$. We then use the facts that $\det \left( xB \right)={{x}^{n}}\det \left( B \right)$, where ‘n’ is the order of the matrix, $\det \left( {{A}^{n}} \right)={{\left( \det \left( A \right) \right)}^{n}}$ and $\det \left( I \right)=1$ to find value of $\det \left( A \right)$. We then use the fact $\det \left( adj\left( A \right) \right)={{\left( \det \left( A \right) \right)}^{n-1}}$ to find $\det \left( adj\left( \dfrac{A}{2} \right) \right)$. We then multiply the obtained ${{A}^{3}}$ with ${{A}^{-1}}$ on both sides and use the fact $adj\left( A \right)=\left| A \right|{{A}^{-1}}$ to find $adj\left( A \right)$. Now, consider ${{\left( A-2I \right)}^{3}}$ and use the necessary relations to find the matrix and then find the trace of it.
Complete step by step answer:
According to the problem, we are given that A is a non-singular matrix of order $3\times 3$ whose entries are complex numbers and satisfies $2{{A}^{2}}=4A+{{A}^{3}}$. We need to find which of the given options are true.
Since A is a non-singular matrix, it will have an inverse.
Now, let us multiply both sides of $2{{A}^{2}}=4A+{{A}^{3}}$ with ${{A}^{-1}}$.
So, we get $2A.A.{{A}^{-1}}=4A.{{A}^{-1}}+A.A.A.{{A}^{-1}}$.
We know that $A.{{A}^{-1}}=I$. So, we get $2A.I=4I+A.A.I$.
$\Rightarrow 2A=4I+{{A}^{2}}$ ---(1).
But we have $2{{A}^{2}}=4A+{{A}^{3}}$, which gives ${{A}^{2}}=2A+\dfrac{{{A}^{3}}}{2}$. We substitute this in equation (1).
$\Rightarrow 2A=4I+2A+\dfrac{{{A}^{3}}}{2}$.
$\Rightarrow \dfrac{{{A}^{3}}}{2}=-4I$.
$\Rightarrow {{A}^{3}}=-8I$ ---(2).
Now, we have $\dfrac{{{A}^{3}}}{8}=-I$. Let us apply determinant on both sides.
$\Rightarrow \det \left( \dfrac{{{A}^{3}}}{8} \right)=\det \left( -I \right)$.
We know that $\det \left( xB \right)={{x}^{n}}\det \left( B \right)$, where ‘n’ is the order of the matrix.
$\Rightarrow \det \left( {{\left( \dfrac{A}{2} \right)}^{3}} \right)={{\left( -1 \right)}^{3}}\det \left( I \right)$.
We know that $\det \left( {{A}^{n}} \right)={{\left( \det \left( A \right) \right)}^{n}}$ and $\det \left( I \right)=1$.
So, we get $\det {{\left( \dfrac{A}{2} \right)}^{3}}=-1$.
$\Rightarrow \det \left( \dfrac{A}{2} \right)=-1$ ---(3).
$\Rightarrow {{\left( \dfrac{1}{2} \right)}^{3}}\times \det \left( A \right)=-1$.
$\Rightarrow \dfrac{1}{8}\times \det \left( A \right)=-1$.
$\Rightarrow \det \left( A \right)=-8$ ---(4).
We know that $\det \left( adj\left( A \right) \right)={{\left( \det \left( A \right) \right)}^{n-1}}$, where ‘n’ is the order of the matrix.
So, we get $\det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( \det \left( \dfrac{A}{2} \right) \right)}^{3-1}}$.
$\Rightarrow \det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( \det \left( \dfrac{A}{2} \right) \right)}^{2}}$.
From equation (3), we get $\det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( -1 \right)}^{2}}$.
$\Rightarrow \det \left( adj\left( \dfrac{A}{2} \right) \right)=1$ ---(5).
From equation (2), we have ${{A}^{3}}=-8I$. Let us multiply both sides with ${{A}^{-1}}$.
$\Rightarrow A.A.A.{{A}^{-1}}=-8I.{{A}^{-1}}$.
$\Rightarrow A.A.I=-8{{A}^{-1}}$.
From equation (4), we have ${{A}^{2}}=\left| A \right|{{A}^{-1}}$.
We know that $adj\left( A \right)=\left| A \right|{{A}^{-1}}$. So, we get ${{A}^{2}}=adj\left( A \right)$ ---(6).
Now, let us consider ${{\left( A-2I \right)}^{3}}$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-6{{A}^{2}}+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-3\left( 4A+{{A}^{3}} \right)+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-12A-3{{A}^{3}}+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=-2{{A}^{3}}-8I$.
From equation (2), we get ${{\left( A-2I \right)}^{3}}=-2\left( -8I \right)-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=16I-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=\left[ \begin{matrix}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8 \\
\end{matrix} \right]$.
$\Rightarrow tr\left( {{\left( A-2I \right)}^{3}} \right)=8+8+8=24$ ---(7).
From equations (4), (5), (6) and (7), we can see all the given options are true.
∴ The correct options for the given problem are (a), (b), (c) and (d).
Note: We can see that this problem contains a heavy amount of calculations, so we need to do each step carefully while solving this problem. We can also assume a matrix with complex numbers to solve this problem but that becomes hectic to make the calculations and get the solution. We can also take the complex cube roots of –1 but, we just need to check whether at least one of the solutions satisfy the options.
Complete step by step answer:
According to the problem, we are given that A is a non-singular matrix of order $3\times 3$ whose entries are complex numbers and satisfies $2{{A}^{2}}=4A+{{A}^{3}}$. We need to find which of the given options are true.
Since A is a non-singular matrix, it will have an inverse.
Now, let us multiply both sides of $2{{A}^{2}}=4A+{{A}^{3}}$ with ${{A}^{-1}}$.
So, we get $2A.A.{{A}^{-1}}=4A.{{A}^{-1}}+A.A.A.{{A}^{-1}}$.
We know that $A.{{A}^{-1}}=I$. So, we get $2A.I=4I+A.A.I$.
$\Rightarrow 2A=4I+{{A}^{2}}$ ---(1).
But we have $2{{A}^{2}}=4A+{{A}^{3}}$, which gives ${{A}^{2}}=2A+\dfrac{{{A}^{3}}}{2}$. We substitute this in equation (1).
$\Rightarrow 2A=4I+2A+\dfrac{{{A}^{3}}}{2}$.
$\Rightarrow \dfrac{{{A}^{3}}}{2}=-4I$.
$\Rightarrow {{A}^{3}}=-8I$ ---(2).
Now, we have $\dfrac{{{A}^{3}}}{8}=-I$. Let us apply determinant on both sides.
$\Rightarrow \det \left( \dfrac{{{A}^{3}}}{8} \right)=\det \left( -I \right)$.
We know that $\det \left( xB \right)={{x}^{n}}\det \left( B \right)$, where ‘n’ is the order of the matrix.
$\Rightarrow \det \left( {{\left( \dfrac{A}{2} \right)}^{3}} \right)={{\left( -1 \right)}^{3}}\det \left( I \right)$.
We know that $\det \left( {{A}^{n}} \right)={{\left( \det \left( A \right) \right)}^{n}}$ and $\det \left( I \right)=1$.
So, we get $\det {{\left( \dfrac{A}{2} \right)}^{3}}=-1$.
$\Rightarrow \det \left( \dfrac{A}{2} \right)=-1$ ---(3).
$\Rightarrow {{\left( \dfrac{1}{2} \right)}^{3}}\times \det \left( A \right)=-1$.
$\Rightarrow \dfrac{1}{8}\times \det \left( A \right)=-1$.
$\Rightarrow \det \left( A \right)=-8$ ---(4).
We know that $\det \left( adj\left( A \right) \right)={{\left( \det \left( A \right) \right)}^{n-1}}$, where ‘n’ is the order of the matrix.
So, we get $\det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( \det \left( \dfrac{A}{2} \right) \right)}^{3-1}}$.
$\Rightarrow \det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( \det \left( \dfrac{A}{2} \right) \right)}^{2}}$.
From equation (3), we get $\det \left( adj\left( \dfrac{A}{2} \right) \right)={{\left( -1 \right)}^{2}}$.
$\Rightarrow \det \left( adj\left( \dfrac{A}{2} \right) \right)=1$ ---(5).
From equation (2), we have ${{A}^{3}}=-8I$. Let us multiply both sides with ${{A}^{-1}}$.
$\Rightarrow A.A.A.{{A}^{-1}}=-8I.{{A}^{-1}}$.
$\Rightarrow A.A.I=-8{{A}^{-1}}$.
From equation (4), we have ${{A}^{2}}=\left| A \right|{{A}^{-1}}$.
We know that $adj\left( A \right)=\left| A \right|{{A}^{-1}}$. So, we get ${{A}^{2}}=adj\left( A \right)$ ---(6).
Now, let us consider ${{\left( A-2I \right)}^{3}}$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-6{{A}^{2}}+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-3\left( 4A+{{A}^{3}} \right)+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}={{A}^{3}}-12A-3{{A}^{3}}+12A-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=-2{{A}^{3}}-8I$.
From equation (2), we get ${{\left( A-2I \right)}^{3}}=-2\left( -8I \right)-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=16I-8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=8I$.
$\Rightarrow {{\left( A-2I \right)}^{3}}=\left[ \begin{matrix}
8 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & 8 \\
\end{matrix} \right]$.
$\Rightarrow tr\left( {{\left( A-2I \right)}^{3}} \right)=8+8+8=24$ ---(7).
From equations (4), (5), (6) and (7), we can see all the given options are true.
∴ The correct options for the given problem are (a), (b), (c) and (d).
Note: We can see that this problem contains a heavy amount of calculations, so we need to do each step carefully while solving this problem. We can also assume a matrix with complex numbers to solve this problem but that becomes hectic to make the calculations and get the solution. We can also take the complex cube roots of –1 but, we just need to check whether at least one of the solutions satisfy the options.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

