
Let A = {1, 2, 3} and R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}. Then R is
(a) reflexive and symmetric but not transitive
(b) symmetric and transitive but not reflexive
(c) reflexive and transitive but not symmetric
(d) an equivalence relation
Answer
597k+ views
Hint:Here, we will use the definitions of reflexive, symmetric and transitive relations to check whether the given relations are reflexive, symmetric or transitive.
Complete step-by-step answer:
A relation between two sets is a collection of ordered pairs containing one object from each set. If the object x is from the first set and the object y is from the second set, then the objects are said to be related if the ordered pair (x, y) is in the relation.
A relation R is reflexive if each element is related itself, i.e. (a, a) $\in $ R, where a is an element of the domain.
A relation R is symmetric in case if any one element is related to any other element, then the second element is related to the first, i.e. if (x, y) $\in $ R then (y, x) $\in $ R, where x and y are the elements of domain and range respectively.
A relation R is transitive in case if any one element is related to a second and that second element is related to a third, then the first element is related to the third, i.e. if (x, y) $\in $ R and (y, z) $\in $ R then (x, z) $\in $ R.
Here, the given relation is:
R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}
The elements present in A are 1, 2 and 3.
We can clearly see that (1, 1), (2, 2) and (3, 3) exists in R.
So, R is reflexive.
Now, we can see that (1, 2) $\in $ R but (2, 1) $\in $ R.
Also, (2, 3) $\in $ R and (3, 2) $\in $ R.
This means that R is symmetric.
Now, (1, 2) $\in $ R, (2, 3) $\in $ R but (1, 3) $\notin $ R.
This implies that R is not transitive.
Therefore, R is reflexive and symmetric but not transitive.
Hence, option (a) is the correct answer.
Note: Students should note here that for a relation to be a particular type of relation, i.e. reflexive, symmetric or transitive, all its elements must satisfy the required conditions. If we are able to find even a single counter example, i.e. if any of the elements doesn’t satisfy the criteria, then we can’t proceed further.
Complete step-by-step answer:
A relation between two sets is a collection of ordered pairs containing one object from each set. If the object x is from the first set and the object y is from the second set, then the objects are said to be related if the ordered pair (x, y) is in the relation.
A relation R is reflexive if each element is related itself, i.e. (a, a) $\in $ R, where a is an element of the domain.
A relation R is symmetric in case if any one element is related to any other element, then the second element is related to the first, i.e. if (x, y) $\in $ R then (y, x) $\in $ R, where x and y are the elements of domain and range respectively.
A relation R is transitive in case if any one element is related to a second and that second element is related to a third, then the first element is related to the third, i.e. if (x, y) $\in $ R and (y, z) $\in $ R then (x, z) $\in $ R.
Here, the given relation is:
R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}
The elements present in A are 1, 2 and 3.
We can clearly see that (1, 1), (2, 2) and (3, 3) exists in R.
So, R is reflexive.
Now, we can see that (1, 2) $\in $ R but (2, 1) $\in $ R.
Also, (2, 3) $\in $ R and (3, 2) $\in $ R.
This means that R is symmetric.
Now, (1, 2) $\in $ R, (2, 3) $\in $ R but (1, 3) $\notin $ R.
This implies that R is not transitive.
Therefore, R is reflexive and symmetric but not transitive.
Hence, option (a) is the correct answer.
Note: Students should note here that for a relation to be a particular type of relation, i.e. reflexive, symmetric or transitive, all its elements must satisfy the required conditions. If we are able to find even a single counter example, i.e. if any of the elements doesn’t satisfy the criteria, then we can’t proceed further.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

