Answer
Verified
413.7k+ views
Hint: The perpendicular distances are always shorter than the normal distance. So, take the tangent from the point to the circle to take the perpendicular distance and also make the diagram for more clarity.
Complete step-by-step answer:
The given question when drawn on the sheet is shown below:
As given in the question the equation of the circle is $ {x^2} + {y^2} = 1 $ . Compare the equation of circle with general equation of circle $ {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} $ , where $ \left( {h,k} \right) $ is the centre of the circle and $ r $ is the radius of the circle.
After comparing it gives the centre of the circle as $ C\left( {0,0} \right) $ and the radius of the circle as $ 1 $ .
Draw the tangents from the points $ \left( { - 2,0} \right) $ and $ \left( {2,0} \right) $ to the circle $ {x^2} + {y^2} = 1 $ . It meets the circle at the points $ P\left( { - \dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right) $ and $ Q\left( {\dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right) $ .
Now the triangles $ APC $ and $ BQC $ are both right angled triangles. So, by the help of Pythagoras theorem it can be deduced that $ AP = \sqrt {C{A^2} - C{P^2}} $ and $ BQ = \sqrt {C{B^2} - C{Q^2}} $ .
The lengths $ CA $ , $ CP $ , $ CB $ and $ CQ $ can be calculated with the help of distance formula and are equal to $ 2 $ , $ 1 $ , $ 2 $ and $ 1 $ respectively.
Substitute these values we get,
$
\Rightarrow AP = \sqrt {C{A^2} - C{P^2}} \\
= \sqrt {{2^2} - {1^2}} \\
= \sqrt {4 - 1} \\
= \sqrt 3 \\
$
And,
$
BQ = \sqrt {C{B^2} - C{Q^2}} \\
= \sqrt {{2^2} - {1^2}} \\
= \sqrt {4 - 1} \\
= \sqrt 3 \;
$
The arc length $ PQ $ will be equal to $ r \times \angle PCQ = 1 \times \dfrac{\pi }{3} = \dfrac{\pi }{3} $ .
The shortest distance from $ \left( { - 2,0} \right) $ to $ \left( {2,0} \right) $ is equal to sum of the lengths of $ AP $ , $ BQ $ and $ PQ $ i.e. $ \sqrt 3 + \sqrt 3 + \dfrac{\pi }{3} = 2\sqrt 3 + \dfrac{\pi }{3} $ .
So, the correct answer is “Option C”.
Note: The perpendicular distances are always shorter than any other distance and perpendicular to the boundary of the circle is always a tangent and the arc length is calculated by the angle which tangents make with each other.
Complete step-by-step answer:
The given question when drawn on the sheet is shown below:
As given in the question the equation of the circle is $ {x^2} + {y^2} = 1 $ . Compare the equation of circle with general equation of circle $ {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} $ , where $ \left( {h,k} \right) $ is the centre of the circle and $ r $ is the radius of the circle.
After comparing it gives the centre of the circle as $ C\left( {0,0} \right) $ and the radius of the circle as $ 1 $ .
Draw the tangents from the points $ \left( { - 2,0} \right) $ and $ \left( {2,0} \right) $ to the circle $ {x^2} + {y^2} = 1 $ . It meets the circle at the points $ P\left( { - \dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right) $ and $ Q\left( {\dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right) $ .
Now the triangles $ APC $ and $ BQC $ are both right angled triangles. So, by the help of Pythagoras theorem it can be deduced that $ AP = \sqrt {C{A^2} - C{P^2}} $ and $ BQ = \sqrt {C{B^2} - C{Q^2}} $ .
The lengths $ CA $ , $ CP $ , $ CB $ and $ CQ $ can be calculated with the help of distance formula and are equal to $ 2 $ , $ 1 $ , $ 2 $ and $ 1 $ respectively.
Substitute these values we get,
$
\Rightarrow AP = \sqrt {C{A^2} - C{P^2}} \\
= \sqrt {{2^2} - {1^2}} \\
= \sqrt {4 - 1} \\
= \sqrt 3 \\
$
And,
$
BQ = \sqrt {C{B^2} - C{Q^2}} \\
= \sqrt {{2^2} - {1^2}} \\
= \sqrt {4 - 1} \\
= \sqrt 3 \;
$
The arc length $ PQ $ will be equal to $ r \times \angle PCQ = 1 \times \dfrac{\pi }{3} = \dfrac{\pi }{3} $ .
The shortest distance from $ \left( { - 2,0} \right) $ to $ \left( {2,0} \right) $ is equal to sum of the lengths of $ AP $ , $ BQ $ and $ PQ $ i.e. $ \sqrt 3 + \sqrt 3 + \dfrac{\pi }{3} = 2\sqrt 3 + \dfrac{\pi }{3} $ .
So, the correct answer is “Option C”.
Note: The perpendicular distances are always shorter than any other distance and perpendicular to the boundary of the circle is always a tangent and the arc length is calculated by the angle which tangents make with each other.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
A group of fish is known as class 7 english CBSE
The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE
Write all prime numbers between 80 and 100 class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Who administers the oath of office to the President class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE