What is the length of shortest path by which one can go from $ \left( { - 2,0} \right) $ to $ \left( {2,0} \right) $ without entering the interior of the circle, $ {x^2} + {y^2} = 1 $ :
A. $ 2\sqrt 3 $
B. $ \sqrt 3 + \dfrac{{2\pi }}{3} $
C. $ 2\sqrt 3 + \dfrac{\pi }{3} $
D.None of these
Answer
Verified
450k+ views
Hint: The perpendicular distances are always shorter than the normal distance. So, take the tangent from the point to the circle to take the perpendicular distance and also make the diagram for more clarity.
Complete step-by-step answer:
The given question when drawn on the sheet is shown below:
As given in the question the equation of the circle is $ {x^2} + {y^2} = 1 $ . Compare the equation of circle with general equation of circle $ {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} $ , where $ \left( {h,k} \right) $ is the centre of the circle and $ r $ is the radius of the circle.
After comparing it gives the centre of the circle as $ C\left( {0,0} \right) $ and the radius of the circle as $ 1 $ .
Draw the tangents from the points $ \left( { - 2,0} \right) $ and $ \left( {2,0} \right) $ to the circle $ {x^2} + {y^2} = 1 $ . It meets the circle at the points $ P\left( { - \dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right) $ and $ Q\left( {\dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right) $ .
Now the triangles $ APC $ and $ BQC $ are both right angled triangles. So, by the help of Pythagoras theorem it can be deduced that $ AP = \sqrt {C{A^2} - C{P^2}} $ and $ BQ = \sqrt {C{B^2} - C{Q^2}} $ .
The lengths $ CA $ , $ CP $ , $ CB $ and $ CQ $ can be calculated with the help of distance formula and are equal to $ 2 $ , $ 1 $ , $ 2 $ and $ 1 $ respectively.
Substitute these values we get,
$
\Rightarrow AP = \sqrt {C{A^2} - C{P^2}} \\
= \sqrt {{2^2} - {1^2}} \\
= \sqrt {4 - 1} \\
= \sqrt 3 \\
$
And,
$
BQ = \sqrt {C{B^2} - C{Q^2}} \\
= \sqrt {{2^2} - {1^2}} \\
= \sqrt {4 - 1} \\
= \sqrt 3 \;
$
The arc length $ PQ $ will be equal to $ r \times \angle PCQ = 1 \times \dfrac{\pi }{3} = \dfrac{\pi }{3} $ .
The shortest distance from $ \left( { - 2,0} \right) $ to $ \left( {2,0} \right) $ is equal to sum of the lengths of $ AP $ , $ BQ $ and $ PQ $ i.e. $ \sqrt 3 + \sqrt 3 + \dfrac{\pi }{3} = 2\sqrt 3 + \dfrac{\pi }{3} $ .
So, the correct answer is “Option C”.
Note: The perpendicular distances are always shorter than any other distance and perpendicular to the boundary of the circle is always a tangent and the arc length is calculated by the angle which tangents make with each other.
Complete step-by-step answer:
The given question when drawn on the sheet is shown below:
As given in the question the equation of the circle is $ {x^2} + {y^2} = 1 $ . Compare the equation of circle with general equation of circle $ {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} $ , where $ \left( {h,k} \right) $ is the centre of the circle and $ r $ is the radius of the circle.
After comparing it gives the centre of the circle as $ C\left( {0,0} \right) $ and the radius of the circle as $ 1 $ .
Draw the tangents from the points $ \left( { - 2,0} \right) $ and $ \left( {2,0} \right) $ to the circle $ {x^2} + {y^2} = 1 $ . It meets the circle at the points $ P\left( { - \dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right) $ and $ Q\left( {\dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right) $ .
Now the triangles $ APC $ and $ BQC $ are both right angled triangles. So, by the help of Pythagoras theorem it can be deduced that $ AP = \sqrt {C{A^2} - C{P^2}} $ and $ BQ = \sqrt {C{B^2} - C{Q^2}} $ .
The lengths $ CA $ , $ CP $ , $ CB $ and $ CQ $ can be calculated with the help of distance formula and are equal to $ 2 $ , $ 1 $ , $ 2 $ and $ 1 $ respectively.
Substitute these values we get,
$
\Rightarrow AP = \sqrt {C{A^2} - C{P^2}} \\
= \sqrt {{2^2} - {1^2}} \\
= \sqrt {4 - 1} \\
= \sqrt 3 \\
$
And,
$
BQ = \sqrt {C{B^2} - C{Q^2}} \\
= \sqrt {{2^2} - {1^2}} \\
= \sqrt {4 - 1} \\
= \sqrt 3 \;
$
The arc length $ PQ $ will be equal to $ r \times \angle PCQ = 1 \times \dfrac{\pi }{3} = \dfrac{\pi }{3} $ .
The shortest distance from $ \left( { - 2,0} \right) $ to $ \left( {2,0} \right) $ is equal to sum of the lengths of $ AP $ , $ BQ $ and $ PQ $ i.e. $ \sqrt 3 + \sqrt 3 + \dfrac{\pi }{3} = 2\sqrt 3 + \dfrac{\pi }{3} $ .
So, the correct answer is “Option C”.
Note: The perpendicular distances are always shorter than any other distance and perpendicular to the boundary of the circle is always a tangent and the arc length is calculated by the angle which tangents make with each other.
Recently Updated Pages
A house design given on an isometric dot sheet in an class 9 maths CBSE
How does air exert pressure class 9 chemistry CBSE
Name the highest summit of Nilgiri hills AVelliangiri class 9 social science CBSE
If log x+1x2+x624 then the values of twice the sum class 9 maths CBSE
How do you convert 245 into fraction and decimal class 9 maths CBSE
ABCD is a trapezium in which ABparallel DC and AB 2CD class 9 maths CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE
What is pollution? How many types of pollution? Define it