
What is the last digit of this number?
Answer
447.9k+ views
Hint: To obtain the last digit of the number given we will use the recognizing pattern of number method. Firstly we will see what the last digit of starting power of 2 is. Then we will see how the pattern works and then accordingly we will solve the given number without actually multiplying it and get our desired answer.
Complete step by step solution:
The number is given as:
As we know that power of 2 have following values:
As we can see, the last digit of the first four terms is 2,4,8,6 and then after that the last digit of next four terms is 2,4,6,8.
So we can conclude that the power of any number where the last digit is 2 will have the same pattern.
After a group of 4 the pattern starts again.
So as the power of the number 2222 is 3333 we have to find where 3333 falls in the above pattern.
The pattern repeats after 4 values so we will divide 3333 by 4 as below:
So by above value we get the pattern continues for 833 times and then one more time.
So we get that
Last digit will be 6
Last digit will be 2
Hence last digit of is 2
Note:
There are numbers of tools that are used to solve such types of problems such as modular arithmetic, Chinese remainder theorem and also Euler’s theorem but the recognizing the pattern is much simpler and easy to remember. Every number has a different pattern when we raise their power we just have to be observant in order to get the answer.
Complete step by step solution:
The number is given as:
As we know that power of 2 have following values:
As we can see, the last digit of the first four terms is 2,4,8,6 and then after that the last digit of next four terms is 2,4,6,8.
So we can conclude that the power of any number where the last digit is 2 will have the same pattern.
After a group of 4 the pattern starts again.
So as the power of the number 2222 is 3333 we have to find where 3333 falls in the above pattern.
The pattern repeats after 4 values so we will divide 3333 by 4 as below:
So by above value we get the pattern continues for 833 times and then one more time.
So we get that
Hence last digit of
Note:
There are numbers of tools that are used to solve such types of problems such as modular arithmetic, Chinese remainder theorem and also Euler’s theorem but the recognizing the pattern is much simpler and easy to remember. Every number has a different pattern when we raise their power we just have to be observant in order to get the answer.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
