
What is the Laplace transform of \[t\cos at + \sin at\]?
Answer
479.4k+ views
Hint:To find the Laplace transform of \[t\cos at + \sin at\], we will use the one of the properties of Laplace transformation i.e., . Using this we will find the Laplace transformation of \[\sin at\] and then using this we will find the Laplace transform of \[t\cos at\] and then we will add these two results to find the Laplace transformation of \[t\cos at + \sin at\].
Complete step by step answer:
We have to find the Laplace transform of \[t\cos at + \sin at\]. For this we will use the rule for the Laplace transform of the derivative.
Here, \[L\left[ {f(t)} \right] = F(s)\]
Let \[f(t) = \sin at - - - (1)\]
Putting \[t = 0\], we get
\[ \Rightarrow f(0) = \sin \left( 0 \right)\]
On simplification we get,
\[ \Rightarrow f(0) = 0\]
On differentiating \[f(t) = \sin at\], we get
\[ \Rightarrow {f^1}(t) = a\cos at\]
Putting \[t = 0\], we get
\[ \Rightarrow {f^1}(0) = a\cos \left( 0 \right)\]
On simplification we get,
\[ \Rightarrow {f^1}(0) = a\]
Now, on differentiating \[{f^1}(t) = a\cos at\], we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}\sin at - - - (2)\]
Using \[(1)\] in \[(2)\], we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}f(t)\]
Taking the Laplace transformation of both the sides we get
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = L\left[ { - {a^2}f(t)} \right] - - - (3)\]
We know $L\left[ {f'\left( t \right)} \right] = {s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right)$ . Using this we can write \[(3)\] as
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = L\left[ { - {a^2}f(t)} \right] - - - (4)\]
As \[L\left[ {k \times f(t)} \right] = kL\left[ {f(t)} \right]\], where \[k\] is a constant.
Therefore, we can write \[(4)\] as
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = - {a^2}L\left[ {f(t)} \right]\]
Putting the value of \[f(0)\], \[{f^1}(0)\] and \[L\left[ {f(t)} \right] = F(s)\], we get
\[ \Rightarrow {s^2}F(s) - 0 - a = - {a^2}F(s)\]
On rearranging we get
\[ \Rightarrow {s^2}F(s) + {a^2}F(s) = a\]
Taking \[F(s)\] common from the left hand side of the above equation, we get
\[ \Rightarrow \left( {{s^2} + {a^2}} \right)F(s) = a\]
Dividing both the sides by \[\left( {{s^2} + {a^2}} \right)\], we get
\[ \Rightarrow F(s) = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}}\]
\[\therefore L\left[ {\sin at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}} - - - (5)\]
Similarly, now suppose that we let \[f(t) = t\cos at - - - (6)\]
Putting \[t = 0\], we get
\[f(0) = \left( 0 \right) \times \cos \left( 0 \right)\]
On simplification we get
\[ \Rightarrow f(0) = 0\]
On differentiating \[f(t) = t\cos at\] using the product rule of differentiation, we get
\[ \Rightarrow {f^1}(t) = \left( t \right)\left( { - a\sin at} \right) + \left( 1 \right)\left( {\cos at} \right)\]
On simplification we get
\[ \Rightarrow {f^1}(t) = - at\sin at + \cos at\]
Again, on differentiating we get
\[ \Rightarrow {f^{''}}(t) = \left( { - at} \right)\left( {a\cos at} \right) + \left( { - a} \right)\left( {\sin at} \right) - a\sin at\]
On simplification we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}t\cos at - 2a\sin at\]
Using \[(6)\], we can write
\[ \Rightarrow {f^{''}}(t) = - {a^2}f(t) - 2a\sin at - - - (7)\]
Putting \[t = 0\], we get
\[ \Rightarrow {f^{''}}(0) = - {a^2}f(0) - 2a\sin \left( 0 \right)\]
On simplification we get
\[ \Rightarrow {f^{''}}(0) = 0\]
On taking Laplace transformation of \[(7)\], we get
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = L\left[ { - {a^2}f(t) - 2a\sin at} \right]\]
As Laplace transform satisfy the linear property, so we can write the above equation as
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = - {a^2}L\left[ {f(t)} \right] - 2aL\left[ {\sin at} \right]\]
Above we have proved that \[L\left[ {\sin at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}}\]. Using this and putting the value of \[L\left[ {{f^{''}}(t)} \right]\] and \[L\left[ {f(t)} \right]\], we get
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = - {a^2}F(s) - 2a \times \dfrac{a}{{{s^2} + {a^2}}}\]
Putting the value of \[f(0)\] and \[{f^1}(0)\], we get
\[ \Rightarrow {s^2}F(s) - 0 - 1 = - {a^2}F(s) - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On simplification, we get
\[ \Rightarrow {s^2}F(s) - 1 = - {a^2}F(s) - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On rearranging we get
\[ \Rightarrow {s^2}F(s) + {a^2}F(s) = 1 - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On simplification and taking common, we get
\[ \Rightarrow F(s)\left( {{s^2} + {a^2}} \right) = \dfrac{{{s^2} + {a^2} - 2{a^2}}}{{{s^2} + {a^2}}}\]
On further simplification we get
\[ \Rightarrow F(s)\left( {{s^2} + {a^2}} \right) = \dfrac{{{s^2} - {a^2}}}{{{s^2} + {a^2}}}\]
Dividing both the sides by \[\left( {{s^2} + {a^2}} \right)\] we get
\[ \Rightarrow F(s) = \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
\[\therefore L\left[ {t\cos at} \right] = \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}} - - - (8)\]
Adding \[(5)\] and \[(8)\], we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}} + \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On simplifying we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{a\left( {{s^2} + {a^2}} \right) + \left( {{s^2} - {a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On further simplification, we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{a{s^2} + {s^2} + {a^3} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On taking common,
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On rewriting we get
\[ \Rightarrow L\left[ {t\cos at + \sin at} \right] = \dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\].
Therefore, the Laplace transform of \[t\cos at + \sin at\] is \[\dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\].
Note:Laplace transform is an integral transform that converts a function of a real variable to a function of a complex variable. Laplace transform satisfy the linear property i.e., \[L\left[ {f\left( t \right) + g\left( t \right)} \right] = L\left[ {f\left( t \right)} \right] + L\left[ {g\left( t \right)} \right]\].
Complete step by step answer:
We have to find the Laplace transform of \[t\cos at + \sin at\]. For this we will use the rule for the Laplace transform of the derivative.
Here, \[L\left[ {f(t)} \right] = F(s)\]
Let \[f(t) = \sin at - - - (1)\]
Putting \[t = 0\], we get
\[ \Rightarrow f(0) = \sin \left( 0 \right)\]
On simplification we get,
\[ \Rightarrow f(0) = 0\]
On differentiating \[f(t) = \sin at\], we get
\[ \Rightarrow {f^1}(t) = a\cos at\]
Putting \[t = 0\], we get
\[ \Rightarrow {f^1}(0) = a\cos \left( 0 \right)\]
On simplification we get,
\[ \Rightarrow {f^1}(0) = a\]
Now, on differentiating \[{f^1}(t) = a\cos at\], we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}\sin at - - - (2)\]
Using \[(1)\] in \[(2)\], we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}f(t)\]
Taking the Laplace transformation of both the sides we get
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = L\left[ { - {a^2}f(t)} \right] - - - (3)\]
We know $L\left[ {f'\left( t \right)} \right] = {s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right)$ . Using this we can write \[(3)\] as
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = L\left[ { - {a^2}f(t)} \right] - - - (4)\]
As \[L\left[ {k \times f(t)} \right] = kL\left[ {f(t)} \right]\], where \[k\] is a constant.
Therefore, we can write \[(4)\] as
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = - {a^2}L\left[ {f(t)} \right]\]
Putting the value of \[f(0)\], \[{f^1}(0)\] and \[L\left[ {f(t)} \right] = F(s)\], we get
\[ \Rightarrow {s^2}F(s) - 0 - a = - {a^2}F(s)\]
On rearranging we get
\[ \Rightarrow {s^2}F(s) + {a^2}F(s) = a\]
Taking \[F(s)\] common from the left hand side of the above equation, we get
\[ \Rightarrow \left( {{s^2} + {a^2}} \right)F(s) = a\]
Dividing both the sides by \[\left( {{s^2} + {a^2}} \right)\], we get
\[ \Rightarrow F(s) = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}}\]
\[\therefore L\left[ {\sin at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}} - - - (5)\]
Similarly, now suppose that we let \[f(t) = t\cos at - - - (6)\]
Putting \[t = 0\], we get
\[f(0) = \left( 0 \right) \times \cos \left( 0 \right)\]
On simplification we get
\[ \Rightarrow f(0) = 0\]
On differentiating \[f(t) = t\cos at\] using the product rule of differentiation, we get
\[ \Rightarrow {f^1}(t) = \left( t \right)\left( { - a\sin at} \right) + \left( 1 \right)\left( {\cos at} \right)\]
On simplification we get
\[ \Rightarrow {f^1}(t) = - at\sin at + \cos at\]
Again, on differentiating we get
\[ \Rightarrow {f^{''}}(t) = \left( { - at} \right)\left( {a\cos at} \right) + \left( { - a} \right)\left( {\sin at} \right) - a\sin at\]
On simplification we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}t\cos at - 2a\sin at\]
Using \[(6)\], we can write
\[ \Rightarrow {f^{''}}(t) = - {a^2}f(t) - 2a\sin at - - - (7)\]
Putting \[t = 0\], we get
\[ \Rightarrow {f^{''}}(0) = - {a^2}f(0) - 2a\sin \left( 0 \right)\]
On simplification we get
\[ \Rightarrow {f^{''}}(0) = 0\]
On taking Laplace transformation of \[(7)\], we get
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = L\left[ { - {a^2}f(t) - 2a\sin at} \right]\]
As Laplace transform satisfy the linear property, so we can write the above equation as
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = - {a^2}L\left[ {f(t)} \right] - 2aL\left[ {\sin at} \right]\]
Above we have proved that \[L\left[ {\sin at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}}\]. Using this and putting the value of \[L\left[ {{f^{''}}(t)} \right]\] and \[L\left[ {f(t)} \right]\], we get
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = - {a^2}F(s) - 2a \times \dfrac{a}{{{s^2} + {a^2}}}\]
Putting the value of \[f(0)\] and \[{f^1}(0)\], we get
\[ \Rightarrow {s^2}F(s) - 0 - 1 = - {a^2}F(s) - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On simplification, we get
\[ \Rightarrow {s^2}F(s) - 1 = - {a^2}F(s) - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On rearranging we get
\[ \Rightarrow {s^2}F(s) + {a^2}F(s) = 1 - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On simplification and taking common, we get
\[ \Rightarrow F(s)\left( {{s^2} + {a^2}} \right) = \dfrac{{{s^2} + {a^2} - 2{a^2}}}{{{s^2} + {a^2}}}\]
On further simplification we get
\[ \Rightarrow F(s)\left( {{s^2} + {a^2}} \right) = \dfrac{{{s^2} - {a^2}}}{{{s^2} + {a^2}}}\]
Dividing both the sides by \[\left( {{s^2} + {a^2}} \right)\] we get
\[ \Rightarrow F(s) = \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
\[\therefore L\left[ {t\cos at} \right] = \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}} - - - (8)\]
Adding \[(5)\] and \[(8)\], we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}} + \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On simplifying we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{a\left( {{s^2} + {a^2}} \right) + \left( {{s^2} - {a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On further simplification, we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{a{s^2} + {s^2} + {a^3} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On taking common,
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On rewriting we get
\[ \Rightarrow L\left[ {t\cos at + \sin at} \right] = \dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\].
Therefore, the Laplace transform of \[t\cos at + \sin at\] is \[\dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\].
Note:Laplace transform is an integral transform that converts a function of a real variable to a function of a complex variable. Laplace transform satisfy the linear property i.e., \[L\left[ {f\left( t \right) + g\left( t \right)} \right] = L\left[ {f\left( t \right)} \right] + L\left[ {g\left( t \right)} \right]\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

