
What is the Laplace transform of \[t\cos at + \sin at\]?
Answer
493.2k+ views
Hint:To find the Laplace transform of \[t\cos at + \sin at\], we will use the one of the properties of Laplace transformation i.e., . Using this we will find the Laplace transformation of \[\sin at\] and then using this we will find the Laplace transform of \[t\cos at\] and then we will add these two results to find the Laplace transformation of \[t\cos at + \sin at\].
Complete step by step answer:
We have to find the Laplace transform of \[t\cos at + \sin at\]. For this we will use the rule for the Laplace transform of the derivative.
Here, \[L\left[ {f(t)} \right] = F(s)\]
Let \[f(t) = \sin at - - - (1)\]
Putting \[t = 0\], we get
\[ \Rightarrow f(0) = \sin \left( 0 \right)\]
On simplification we get,
\[ \Rightarrow f(0) = 0\]
On differentiating \[f(t) = \sin at\], we get
\[ \Rightarrow {f^1}(t) = a\cos at\]
Putting \[t = 0\], we get
\[ \Rightarrow {f^1}(0) = a\cos \left( 0 \right)\]
On simplification we get,
\[ \Rightarrow {f^1}(0) = a\]
Now, on differentiating \[{f^1}(t) = a\cos at\], we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}\sin at - - - (2)\]
Using \[(1)\] in \[(2)\], we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}f(t)\]
Taking the Laplace transformation of both the sides we get
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = L\left[ { - {a^2}f(t)} \right] - - - (3)\]
We know $L\left[ {f'\left( t \right)} \right] = {s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right)$ . Using this we can write \[(3)\] as
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = L\left[ { - {a^2}f(t)} \right] - - - (4)\]
As \[L\left[ {k \times f(t)} \right] = kL\left[ {f(t)} \right]\], where \[k\] is a constant.
Therefore, we can write \[(4)\] as
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = - {a^2}L\left[ {f(t)} \right]\]
Putting the value of \[f(0)\], \[{f^1}(0)\] and \[L\left[ {f(t)} \right] = F(s)\], we get
\[ \Rightarrow {s^2}F(s) - 0 - a = - {a^2}F(s)\]
On rearranging we get
\[ \Rightarrow {s^2}F(s) + {a^2}F(s) = a\]
Taking \[F(s)\] common from the left hand side of the above equation, we get
\[ \Rightarrow \left( {{s^2} + {a^2}} \right)F(s) = a\]
Dividing both the sides by \[\left( {{s^2} + {a^2}} \right)\], we get
\[ \Rightarrow F(s) = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}}\]
\[\therefore L\left[ {\sin at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}} - - - (5)\]
Similarly, now suppose that we let \[f(t) = t\cos at - - - (6)\]
Putting \[t = 0\], we get
\[f(0) = \left( 0 \right) \times \cos \left( 0 \right)\]
On simplification we get
\[ \Rightarrow f(0) = 0\]
On differentiating \[f(t) = t\cos at\] using the product rule of differentiation, we get
\[ \Rightarrow {f^1}(t) = \left( t \right)\left( { - a\sin at} \right) + \left( 1 \right)\left( {\cos at} \right)\]
On simplification we get
\[ \Rightarrow {f^1}(t) = - at\sin at + \cos at\]
Again, on differentiating we get
\[ \Rightarrow {f^{''}}(t) = \left( { - at} \right)\left( {a\cos at} \right) + \left( { - a} \right)\left( {\sin at} \right) - a\sin at\]
On simplification we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}t\cos at - 2a\sin at\]
Using \[(6)\], we can write
\[ \Rightarrow {f^{''}}(t) = - {a^2}f(t) - 2a\sin at - - - (7)\]
Putting \[t = 0\], we get
\[ \Rightarrow {f^{''}}(0) = - {a^2}f(0) - 2a\sin \left( 0 \right)\]
On simplification we get
\[ \Rightarrow {f^{''}}(0) = 0\]
On taking Laplace transformation of \[(7)\], we get
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = L\left[ { - {a^2}f(t) - 2a\sin at} \right]\]
As Laplace transform satisfy the linear property, so we can write the above equation as
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = - {a^2}L\left[ {f(t)} \right] - 2aL\left[ {\sin at} \right]\]
Above we have proved that \[L\left[ {\sin at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}}\]. Using this and putting the value of \[L\left[ {{f^{''}}(t)} \right]\] and \[L\left[ {f(t)} \right]\], we get
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = - {a^2}F(s) - 2a \times \dfrac{a}{{{s^2} + {a^2}}}\]
Putting the value of \[f(0)\] and \[{f^1}(0)\], we get
\[ \Rightarrow {s^2}F(s) - 0 - 1 = - {a^2}F(s) - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On simplification, we get
\[ \Rightarrow {s^2}F(s) - 1 = - {a^2}F(s) - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On rearranging we get
\[ \Rightarrow {s^2}F(s) + {a^2}F(s) = 1 - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On simplification and taking common, we get
\[ \Rightarrow F(s)\left( {{s^2} + {a^2}} \right) = \dfrac{{{s^2} + {a^2} - 2{a^2}}}{{{s^2} + {a^2}}}\]
On further simplification we get
\[ \Rightarrow F(s)\left( {{s^2} + {a^2}} \right) = \dfrac{{{s^2} - {a^2}}}{{{s^2} + {a^2}}}\]
Dividing both the sides by \[\left( {{s^2} + {a^2}} \right)\] we get
\[ \Rightarrow F(s) = \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
\[\therefore L\left[ {t\cos at} \right] = \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}} - - - (8)\]
Adding \[(5)\] and \[(8)\], we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}} + \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On simplifying we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{a\left( {{s^2} + {a^2}} \right) + \left( {{s^2} - {a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On further simplification, we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{a{s^2} + {s^2} + {a^3} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On taking common,
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On rewriting we get
\[ \Rightarrow L\left[ {t\cos at + \sin at} \right] = \dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\].
Therefore, the Laplace transform of \[t\cos at + \sin at\] is \[\dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\].
Note:Laplace transform is an integral transform that converts a function of a real variable to a function of a complex variable. Laplace transform satisfy the linear property i.e., \[L\left[ {f\left( t \right) + g\left( t \right)} \right] = L\left[ {f\left( t \right)} \right] + L\left[ {g\left( t \right)} \right]\].
Complete step by step answer:
We have to find the Laplace transform of \[t\cos at + \sin at\]. For this we will use the rule for the Laplace transform of the derivative.
Here, \[L\left[ {f(t)} \right] = F(s)\]
Let \[f(t) = \sin at - - - (1)\]
Putting \[t = 0\], we get
\[ \Rightarrow f(0) = \sin \left( 0 \right)\]
On simplification we get,
\[ \Rightarrow f(0) = 0\]
On differentiating \[f(t) = \sin at\], we get
\[ \Rightarrow {f^1}(t) = a\cos at\]
Putting \[t = 0\], we get
\[ \Rightarrow {f^1}(0) = a\cos \left( 0 \right)\]
On simplification we get,
\[ \Rightarrow {f^1}(0) = a\]
Now, on differentiating \[{f^1}(t) = a\cos at\], we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}\sin at - - - (2)\]
Using \[(1)\] in \[(2)\], we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}f(t)\]
Taking the Laplace transformation of both the sides we get
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = L\left[ { - {a^2}f(t)} \right] - - - (3)\]
We know $L\left[ {f'\left( t \right)} \right] = {s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right)$ . Using this we can write \[(3)\] as
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = L\left[ { - {a^2}f(t)} \right] - - - (4)\]
As \[L\left[ {k \times f(t)} \right] = kL\left[ {f(t)} \right]\], where \[k\] is a constant.
Therefore, we can write \[(4)\] as
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = - {a^2}L\left[ {f(t)} \right]\]
Putting the value of \[f(0)\], \[{f^1}(0)\] and \[L\left[ {f(t)} \right] = F(s)\], we get
\[ \Rightarrow {s^2}F(s) - 0 - a = - {a^2}F(s)\]
On rearranging we get
\[ \Rightarrow {s^2}F(s) + {a^2}F(s) = a\]
Taking \[F(s)\] common from the left hand side of the above equation, we get
\[ \Rightarrow \left( {{s^2} + {a^2}} \right)F(s) = a\]
Dividing both the sides by \[\left( {{s^2} + {a^2}} \right)\], we get
\[ \Rightarrow F(s) = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}}\]
\[\therefore L\left[ {\sin at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}} - - - (5)\]
Similarly, now suppose that we let \[f(t) = t\cos at - - - (6)\]
Putting \[t = 0\], we get
\[f(0) = \left( 0 \right) \times \cos \left( 0 \right)\]
On simplification we get
\[ \Rightarrow f(0) = 0\]
On differentiating \[f(t) = t\cos at\] using the product rule of differentiation, we get
\[ \Rightarrow {f^1}(t) = \left( t \right)\left( { - a\sin at} \right) + \left( 1 \right)\left( {\cos at} \right)\]
On simplification we get
\[ \Rightarrow {f^1}(t) = - at\sin at + \cos at\]
Again, on differentiating we get
\[ \Rightarrow {f^{''}}(t) = \left( { - at} \right)\left( {a\cos at} \right) + \left( { - a} \right)\left( {\sin at} \right) - a\sin at\]
On simplification we get
\[ \Rightarrow {f^{''}}(t) = - {a^2}t\cos at - 2a\sin at\]
Using \[(6)\], we can write
\[ \Rightarrow {f^{''}}(t) = - {a^2}f(t) - 2a\sin at - - - (7)\]
Putting \[t = 0\], we get
\[ \Rightarrow {f^{''}}(0) = - {a^2}f(0) - 2a\sin \left( 0 \right)\]
On simplification we get
\[ \Rightarrow {f^{''}}(0) = 0\]
On taking Laplace transformation of \[(7)\], we get
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = L\left[ { - {a^2}f(t) - 2a\sin at} \right]\]
As Laplace transform satisfy the linear property, so we can write the above equation as
\[ \Rightarrow L\left[ {{f^{''}}(t)} \right] = - {a^2}L\left[ {f(t)} \right] - 2aL\left[ {\sin at} \right]\]
Above we have proved that \[L\left[ {\sin at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}}\]. Using this and putting the value of \[L\left[ {{f^{''}}(t)} \right]\] and \[L\left[ {f(t)} \right]\], we get
\[ \Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = - {a^2}F(s) - 2a \times \dfrac{a}{{{s^2} + {a^2}}}\]
Putting the value of \[f(0)\] and \[{f^1}(0)\], we get
\[ \Rightarrow {s^2}F(s) - 0 - 1 = - {a^2}F(s) - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On simplification, we get
\[ \Rightarrow {s^2}F(s) - 1 = - {a^2}F(s) - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On rearranging we get
\[ \Rightarrow {s^2}F(s) + {a^2}F(s) = 1 - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}\]
On simplification and taking common, we get
\[ \Rightarrow F(s)\left( {{s^2} + {a^2}} \right) = \dfrac{{{s^2} + {a^2} - 2{a^2}}}{{{s^2} + {a^2}}}\]
On further simplification we get
\[ \Rightarrow F(s)\left( {{s^2} + {a^2}} \right) = \dfrac{{{s^2} - {a^2}}}{{{s^2} + {a^2}}}\]
Dividing both the sides by \[\left( {{s^2} + {a^2}} \right)\] we get
\[ \Rightarrow F(s) = \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
\[\therefore L\left[ {t\cos at} \right] = \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}} - - - (8)\]
Adding \[(5)\] and \[(8)\], we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}} + \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On simplifying we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{a\left( {{s^2} + {a^2}} \right) + \left( {{s^2} - {a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On further simplification, we get
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{a{s^2} + {s^2} + {a^3} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On taking common,
\[ \Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\]
On rewriting we get
\[ \Rightarrow L\left[ {t\cos at + \sin at} \right] = \dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\].
Therefore, the Laplace transform of \[t\cos at + \sin at\] is \[\dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}\].
Note:Laplace transform is an integral transform that converts a function of a real variable to a function of a complex variable. Laplace transform satisfy the linear property i.e., \[L\left[ {f\left( t \right) + g\left( t \right)} \right] = L\left[ {f\left( t \right)} \right] + L\left[ {g\left( t \right)} \right]\].
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

