
When the kinetic energy of an electron is increased, the wavelength of the associated wave will:
(a) increase
(b) decrease
(c) remain independent of kinetic energy
(d) be none of the above
Answer
586.2k+ views
Hint: Wavelength is inversely proportional to square root of kinetic energy.
Formula used:
> Wavelength:
$\lambda = \dfrac{h}{p}$ ……(1)
where,
h is the Planck’s constant
p is the momentum
> Momentum:
$p = \dfrac{h}{{\sqrt {2mE} }}$ ……(2)
where,
m is the mass
E is the kinetic energy
Complete step-by-step answer:
Given:
1. Kinetic energy is increased.
To find: The new wavelength of the associated wave.
Step 1 of 2:
Write eq (1) by substituting the expression for p:
$\lambda = \dfrac{h}{{\sqrt {2mE} }}$ ……(3)
We can see that:
$\lambda \propto \dfrac{1}{{\sqrt E }}$
Step 2 of 2:
Wavelength and kinetic energy are inversely proportional to each other. Increasing one, will decrease the other and vice versa.
Hence, if we increase the kinetic energy, the wavelength will decrease.
Correct answer:
When the kinetic energy of an electron is increased, the wavelength of the associated wave will: (b) decrease.
Additional Information:
Higher the energy lowers the wavelength. As higher the energy higher will be frequency. But frequency varies inversely with wavelength. Therefore, lower would be wavelength. De-Broglie wavelength associated will also decrease. In the same trend as above. A wave can be superposition of multiple wavelengths at a time but not for the same particle in a definite trajectory with definite velocity.
Note: In questions like these, remember the formula for wavelength and the relation between wavelength and kinetic energy. If two quantities are directly proportional, increasing one will increase the other. On the other hand, if two quantities are inversely proportional, increasing one will decrease the other.
Formula used:
> Wavelength:
$\lambda = \dfrac{h}{p}$ ……(1)
where,
h is the Planck’s constant
p is the momentum
> Momentum:
$p = \dfrac{h}{{\sqrt {2mE} }}$ ……(2)
where,
m is the mass
E is the kinetic energy
Complete step-by-step answer:
Given:
1. Kinetic energy is increased.
To find: The new wavelength of the associated wave.
Step 1 of 2:
Write eq (1) by substituting the expression for p:
$\lambda = \dfrac{h}{{\sqrt {2mE} }}$ ……(3)
We can see that:
$\lambda \propto \dfrac{1}{{\sqrt E }}$
Step 2 of 2:
Wavelength and kinetic energy are inversely proportional to each other. Increasing one, will decrease the other and vice versa.
Hence, if we increase the kinetic energy, the wavelength will decrease.
Correct answer:
When the kinetic energy of an electron is increased, the wavelength of the associated wave will: (b) decrease.
Additional Information:
Higher the energy lowers the wavelength. As higher the energy higher will be frequency. But frequency varies inversely with wavelength. Therefore, lower would be wavelength. De-Broglie wavelength associated will also decrease. In the same trend as above. A wave can be superposition of multiple wavelengths at a time but not for the same particle in a definite trajectory with definite velocity.
Note: In questions like these, remember the formula for wavelength and the relation between wavelength and kinetic energy. If two quantities are directly proportional, increasing one will increase the other. On the other hand, if two quantities are inversely proportional, increasing one will decrease the other.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

