
It is given that \[{{\Delta }_{1}}=\left| \begin{matrix}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x \\
\end{matrix} \right|\] and \[{{\Delta }_{2}}=\left| \begin{matrix}
x & \sin 2\theta & \cos 2\theta \\
-\sin 2\theta & -x & 1 \\
\cos 2\theta & 1 & x \\
\end{matrix} \right|,x\ne 0;\] then for all $\theta \in \left( 0,\dfrac{\pi }{2} \right)$ :
$\begin{align}
& \text{A}\text{. }{{\Delta }_{1}}-{{\Delta }_{2}}=x\left( \cos 2\theta -\cos 4\theta \right) \\
& \text{B}\text{. }{{\Delta }_{1}}+{{\Delta }_{2}}=-2{{x}^{3}} \\
& \text{C}\text{. }{{\Delta }_{1}}-{{\Delta }_{2}}=-2{{x}^{3}} \\
& \text{D}\text{. }{{\Delta }_{1}}-{{\Delta }_{2}}=-2\left( {{x}^{3}}+x-1 \right) \\
\end{align}$
Answer
575.1k+ views
Hint: First we have to solve the determinants given in the question. By simplifying the given determinants we find the values of ${{\Delta }_{1}}\ and {{\Delta }_{2}}$. Then, as given in the options we calculate the value of ${{\Delta }_{1}}+{{\Delta }_{2}}\And {{\Delta }_{1}}-{{\Delta }_{2}}$ and compare the values obtained with the given options to find the correct option.
Complete step-by-step answer:
We have been given \[{{\Delta }_{1}}=\left| \begin{matrix}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x \\
\end{matrix} \right|\] and \[{{\Delta }_{2}}=\left| \begin{matrix}
x & \sin 2\theta & \cos 2\theta \\
-\sin 2\theta & -x & 1 \\
\cos 2\theta & 1 & x \\
\end{matrix} \right|,x\ne 0;\]
Now, let us first simplify the given determinants to get the values of ${{\Delta }_{1}}\And {{\Delta }_{2}}$.
Now, we know that if we have determinant of order $3\times 3$ of the form \[\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\], then the value of determinant is defined as \[{{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{a}_{1}}{{c}_{3}}-{{c}_{1}}{{a}_{3}} \right)+{{c}_{1}}\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)\] .
Now, let us first consider \[{{\Delta }_{1}}=\left| \begin{matrix}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x \\
\end{matrix} \right|\]
When we compare the given determinant with the general form, the value is defined as \[{{\Delta }_{1}}=x\left( -x\times x-1\times 1 \right)-\sin \theta \left( -\sin \theta \times x-\cos \theta \times 1 \right)+\cos \theta \left( -\sin \theta \times 1-\left( -x\times \cos \theta \right) \right)\]
Now, simplifying further we get
\[{{\Delta }_{1}}=x\left( -{{x}^{2}}-1 \right)-\sin \theta \left( -\sin \theta \times x-\cos \theta \right)+\cos \theta \left( -\sin \theta -\left( -x\times \cos \theta \right) \right)\]
\[{{\Delta }_{1}}=x\left( -{{x}^{2}}-1 \right)-\sin \theta \left( -x\sin \theta -\cos \theta \right)+\cos \theta \left( -\sin \theta +x\cos \theta \right)\]
\[{{\Delta }_{1}}=-{{x}^{3}}-x+x{{\sin }^{2}}\theta +\sin \theta \cos \theta -\sin \theta \cos \theta +x{{\cos }^{2}}\theta \]
Now, simply solve the operations, we get
\[{{\Delta }_{1}}=-{{x}^{3}}-x+x\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)\]
Now, we know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
So, substituting the value we get
\[\begin{align}
& {{\Delta }_{1}}=-{{x}^{3}}-x+x\times 1 \\
& {{\Delta }_{1}}=-{{x}^{3}}.............(i) \\
\end{align}\]
Now, let us consider second determinant \[{{\Delta }_{2}}=\left| \begin{matrix}
x & \sin 2\theta & \cos 2\theta \\
-\sin 2\theta & -x & 1 \\
\cos 2\theta & 1 & x \\
\end{matrix} \right|\]
When we compare the given determinant with the general form, the value is defined as \[{{\Delta }_{2}}=x\left( -x\times x-1\times 1 \right)-\sin 2\theta \left( -\sin 2\theta \times x-\cos 2\theta \times 1 \right)+\cos 2\theta \left( -\sin 2\theta \times 1-\left( -x\times \cos 2\theta \right) \right)\]
Now, simplifying further we get
\[{{\Delta }_{2}}=x\left( -{{x}^{2}}-1 \right)-\sin 2\theta \left( -x\sin 2\theta -\cos 2\theta \right)+\cos 2\theta \left( -\sin 2\theta +x\cos 2\theta \right)\]
\[{{\Delta }_{2}}=-{{x}^{3}}-x+x{{\sin }^{2}}2\theta +\sin 2\theta \cos 2\theta -\sin 2\theta \cos 2\theta +x{{\cos }^{2}}2\theta \]
Now, simply solve the operations, we get
\[\begin{align}
& {{\Delta }_{2}}=-{{x}^{3}}-x+x{{\sin }^{2}}2\theta +x{{\cos }^{2}}2\theta \\
& {{\Delta }_{2}}=-{{x}^{3}}-x+x\left( {{\sin }^{2}}2\theta +{{\cos }^{2}}2\theta \right) \\
\end{align}\]
Now, we know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
So, substituting the value we get
\[\begin{align}
& {{\Delta }_{2}}=-{{x}^{3}}-x+x\times 1 \\
& {{\Delta }_{2}}=-{{x}^{3}}.............(ii) \\
\end{align}\]
When we add equation (i) and equation (ii), we get
\[\begin{align}
& {{\Delta }_{1}}+{{\Delta }_{2}}=-{{x}^{3}}+\left( -{{x}^{3}} \right) \\
& {{\Delta }_{1}}+{{\Delta }_{2}}=-2{{x}^{3}} \\
\end{align}\]
When we compare the obtained values with the options, we get that the option B is the correct answer.
Note: We added the equation (i) and equation (ii) first and we get the answer. If we didn’t get any match with the options, we subtract both the equations.
\[\begin{align}
& {{\Delta }_{1}}-{{\Delta }_{2}}=-{{x}^{3}}-\left( -{{x}^{3}} \right) \\
& {{\Delta }_{1}}-{{\Delta }_{2}}=-{{x}^{3}}+{{x}^{3}} \\
& {{\Delta }_{1}}-{{\Delta }_{2}}=0 \\
\end{align}\]
Complete step-by-step answer:
We have been given \[{{\Delta }_{1}}=\left| \begin{matrix}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x \\
\end{matrix} \right|\] and \[{{\Delta }_{2}}=\left| \begin{matrix}
x & \sin 2\theta & \cos 2\theta \\
-\sin 2\theta & -x & 1 \\
\cos 2\theta & 1 & x \\
\end{matrix} \right|,x\ne 0;\]
Now, let us first simplify the given determinants to get the values of ${{\Delta }_{1}}\And {{\Delta }_{2}}$.
Now, we know that if we have determinant of order $3\times 3$ of the form \[\left| \begin{matrix}
{{a}_{1}} & {{b}_{1}} & {{c}_{1}} \\
{{a}_{2}} & {{b}_{2}} & {{c}_{2}} \\
{{a}_{3}} & {{b}_{3}} & {{c}_{3}} \\
\end{matrix} \right|\], then the value of determinant is defined as \[{{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{c}_{2}}{{b}_{3}} \right)-{{b}_{1}}\left( {{a}_{1}}{{c}_{3}}-{{c}_{1}}{{a}_{3}} \right)+{{c}_{1}}\left( {{a}_{2}}{{b}_{3}}-{{b}_{2}}{{a}_{3}} \right)\] .
Now, let us first consider \[{{\Delta }_{1}}=\left| \begin{matrix}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x \\
\end{matrix} \right|\]
When we compare the given determinant with the general form, the value is defined as \[{{\Delta }_{1}}=x\left( -x\times x-1\times 1 \right)-\sin \theta \left( -\sin \theta \times x-\cos \theta \times 1 \right)+\cos \theta \left( -\sin \theta \times 1-\left( -x\times \cos \theta \right) \right)\]
Now, simplifying further we get
\[{{\Delta }_{1}}=x\left( -{{x}^{2}}-1 \right)-\sin \theta \left( -\sin \theta \times x-\cos \theta \right)+\cos \theta \left( -\sin \theta -\left( -x\times \cos \theta \right) \right)\]
\[{{\Delta }_{1}}=x\left( -{{x}^{2}}-1 \right)-\sin \theta \left( -x\sin \theta -\cos \theta \right)+\cos \theta \left( -\sin \theta +x\cos \theta \right)\]
\[{{\Delta }_{1}}=-{{x}^{3}}-x+x{{\sin }^{2}}\theta +\sin \theta \cos \theta -\sin \theta \cos \theta +x{{\cos }^{2}}\theta \]
Now, simply solve the operations, we get
\[{{\Delta }_{1}}=-{{x}^{3}}-x+x\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)\]
Now, we know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
So, substituting the value we get
\[\begin{align}
& {{\Delta }_{1}}=-{{x}^{3}}-x+x\times 1 \\
& {{\Delta }_{1}}=-{{x}^{3}}.............(i) \\
\end{align}\]
Now, let us consider second determinant \[{{\Delta }_{2}}=\left| \begin{matrix}
x & \sin 2\theta & \cos 2\theta \\
-\sin 2\theta & -x & 1 \\
\cos 2\theta & 1 & x \\
\end{matrix} \right|\]
When we compare the given determinant with the general form, the value is defined as \[{{\Delta }_{2}}=x\left( -x\times x-1\times 1 \right)-\sin 2\theta \left( -\sin 2\theta \times x-\cos 2\theta \times 1 \right)+\cos 2\theta \left( -\sin 2\theta \times 1-\left( -x\times \cos 2\theta \right) \right)\]
Now, simplifying further we get
\[{{\Delta }_{2}}=x\left( -{{x}^{2}}-1 \right)-\sin 2\theta \left( -x\sin 2\theta -\cos 2\theta \right)+\cos 2\theta \left( -\sin 2\theta +x\cos 2\theta \right)\]
\[{{\Delta }_{2}}=-{{x}^{3}}-x+x{{\sin }^{2}}2\theta +\sin 2\theta \cos 2\theta -\sin 2\theta \cos 2\theta +x{{\cos }^{2}}2\theta \]
Now, simply solve the operations, we get
\[\begin{align}
& {{\Delta }_{2}}=-{{x}^{3}}-x+x{{\sin }^{2}}2\theta +x{{\cos }^{2}}2\theta \\
& {{\Delta }_{2}}=-{{x}^{3}}-x+x\left( {{\sin }^{2}}2\theta +{{\cos }^{2}}2\theta \right) \\
\end{align}\]
Now, we know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
So, substituting the value we get
\[\begin{align}
& {{\Delta }_{2}}=-{{x}^{3}}-x+x\times 1 \\
& {{\Delta }_{2}}=-{{x}^{3}}.............(ii) \\
\end{align}\]
When we add equation (i) and equation (ii), we get
\[\begin{align}
& {{\Delta }_{1}}+{{\Delta }_{2}}=-{{x}^{3}}+\left( -{{x}^{3}} \right) \\
& {{\Delta }_{1}}+{{\Delta }_{2}}=-2{{x}^{3}} \\
\end{align}\]
When we compare the obtained values with the options, we get that the option B is the correct answer.
Note: We added the equation (i) and equation (ii) first and we get the answer. If we didn’t get any match with the options, we subtract both the equations.
\[\begin{align}
& {{\Delta }_{1}}-{{\Delta }_{2}}=-{{x}^{3}}-\left( -{{x}^{3}} \right) \\
& {{\Delta }_{1}}-{{\Delta }_{2}}=-{{x}^{3}}+{{x}^{3}} \\
& {{\Delta }_{1}}-{{\Delta }_{2}}=0 \\
\end{align}\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
December 10th of 1948 is an important day in the history class 12 sst CBSE

Prove that a parallelogram circumscribing a circle-class-12-maths-CBSE

Dihybrid cross is made between RRYY yellow round seed class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

