
Is the following statement true?
The foot of perpendicular (H) from the focus (S) on any tangent to a parabola at any point P lies on the tangent at vertex.
Answer
618.9k+ views
Hint: We have to assume parabola which bisect the angle between the focal chord through P and perpendicular from P and perpendicular from P on the directrix.
Complete step-by-step answer:
Without loss of generality, Let’s assume the parabola is
${x^2} = 4ay$
The focus is (0,a) and the slope at any point $\left( {c,\dfrac{{{c^2}}}{{4a}}} \right)$ is $\dfrac{c}{{2a}}$ and the tangent equation is
$y = \dfrac{{{c^2}}}{{4a}} = \dfrac{c}{{2a}}\left( {x - c} \right)$
Let the distance d be
$d = \dfrac{{4a\left( a \right) - 2c\left( 0 \right) - {c^2} + 2{c^2}}}{{\sqrt {16{a^2} + 4{c^2}} }}$
Now let’s find its maximum
\[d = \dfrac{{4{a^2} + {c^2}}}{{\sqrt {16{a^2} + 4{c^2}} }}\]
$d = \dfrac{1}{2}\sqrt {4{a^2} + {c^2}} $
This distance has its maximum varying value of c at c=0
So d=a
Now we can say that perpendicular drawn from focus on any tangent to a parabola at any point lies on the tangent at vertex.
NOTE:
Whenever you come to this type of problem assume such a point on parabola which is mentioned above. By using this we can easily get the result that the foot of perpendicular (H) from the focus (S) on any tangent to a parabola at any point P lies on the tangent at vertex.
Complete step-by-step answer:
Without loss of generality, Let’s assume the parabola is
${x^2} = 4ay$
The focus is (0,a) and the slope at any point $\left( {c,\dfrac{{{c^2}}}{{4a}}} \right)$ is $\dfrac{c}{{2a}}$ and the tangent equation is
$y = \dfrac{{{c^2}}}{{4a}} = \dfrac{c}{{2a}}\left( {x - c} \right)$
Let the distance d be
$d = \dfrac{{4a\left( a \right) - 2c\left( 0 \right) - {c^2} + 2{c^2}}}{{\sqrt {16{a^2} + 4{c^2}} }}$
Now let’s find its maximum
\[d = \dfrac{{4{a^2} + {c^2}}}{{\sqrt {16{a^2} + 4{c^2}} }}\]
$d = \dfrac{1}{2}\sqrt {4{a^2} + {c^2}} $
This distance has its maximum varying value of c at c=0
So d=a
Now we can say that perpendicular drawn from focus on any tangent to a parabola at any point lies on the tangent at vertex.
NOTE:
Whenever you come to this type of problem assume such a point on parabola which is mentioned above. By using this we can easily get the result that the foot of perpendicular (H) from the focus (S) on any tangent to a parabola at any point P lies on the tangent at vertex.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

