
Is $ {\tan ^2}x = {\sec ^2}x - 1 $ an identity?
Answer
513.3k+ views
Hint: There are three main identities in trigonometry.
$
\Rightarrow {\sin ^2}x + {\cos ^2}x = 1 \\
\Rightarrow 1 + {\tan ^2}x = {\sec ^2}x \\
\Rightarrow 1 + {\cot ^2}x = \cos e{c^2}x \;
$
Using relations and mathematical calculations, we can derive these identities in many different forms. To check whether the given form is derived from one of these, we will compare the given form with the main form and see if it can be derived back to the main form or not.
Complete step-by-step answer:
In this question, we are given a trigonometric equation and we are supposed to check if it is an identity or not.
Given equation: $ {\tan ^2}x = {\sec ^2}x - 1 $
Now, we know the three famous trigonometric identities are:
$
\Rightarrow {\sin ^2}x + {\cos ^2}x = 1 \\
\Rightarrow 1 + {\tan ^2}x = {\sec ^2}x \\
\Rightarrow 1 + {\cot ^2}x = \cos e{c^2}x \;
$
Now, if take the identity $ 1 + {\tan ^2}x = {\sec ^2}x $ and subtract 1 on both LHS and RHS, we will get
$
\Rightarrow 1 + {\tan ^2}x - 1 = {\sec ^2}x - 1 \\
\Rightarrow {\tan ^2}x = {\sec ^2}x - 1 \;
$
So, we can say that the given equation is a trigonometric identity.
Now, let us see how it was derived.
So, the given equation is $ {\tan ^2}x = {\sec ^2}x - 1 $ .
Let us take the RHS of the given equation.
$ \Rightarrow RHS = {\sec ^2}x - 1 $ - - - - - - - - - (1)
Now, we know that sec is the inverse of cos. So, we can write sec as 1 divided by cos. Therefore, equation (1) becomes,
$ \Rightarrow RHS = \dfrac{1}{{{{\cos }^2}x}} - 1 $
Now, take LCM
$ \Rightarrow RHS = \dfrac{{1 - {{\cos }^2}x}}{{{{\cos }^2}x}} $ - - - - - - - - - - - (2)
Now, we have another identity $ {\sin ^2}x + {\cos ^2}x = 1 $ . So, if we subtract $ {\cos ^2}x $ on both LHS and RHS, we will get
$
\Rightarrow {\sin ^2}x + {\cos ^2}x - {\cos ^2}x = 1 - {\cos ^2}x \\
\Rightarrow 1 - {\cos ^2}x = {\sin ^2}x \;
$
Substituting this value in equation (2), we get
$ \Rightarrow RHS = \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} $
Now, we know that $ \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $ . Therefore,
$ \Rightarrow RHS = {\tan ^2}x $
$ \Rightarrow RHS = LHS $
Hence, the given identity is correct and we have seen its derivation.
Note: We can also prove the other identity $ 1 + {\cot ^2}x = \cos e{c^2}x $ .
Here, take the LHS of the equation, we get
$ LHS = 1 + {\cot ^2}x $
Now, $ \cot x = \dfrac{{\cos x}}{{\sin x}} $
$ LHS = 1 + \dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}} $
$ = \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x}} $
Now, we know that $ {\sin ^2}x + {\cos ^2}x = 1 $
$ LHS = \dfrac{1}{{{{\sin }^2}x}} = \cos e{c^2}x $
Hence, $ LHS = RHS $ .
$
\Rightarrow {\sin ^2}x + {\cos ^2}x = 1 \\
\Rightarrow 1 + {\tan ^2}x = {\sec ^2}x \\
\Rightarrow 1 + {\cot ^2}x = \cos e{c^2}x \;
$
Using relations and mathematical calculations, we can derive these identities in many different forms. To check whether the given form is derived from one of these, we will compare the given form with the main form and see if it can be derived back to the main form or not.
Complete step-by-step answer:
In this question, we are given a trigonometric equation and we are supposed to check if it is an identity or not.
Given equation: $ {\tan ^2}x = {\sec ^2}x - 1 $
Now, we know the three famous trigonometric identities are:
$
\Rightarrow {\sin ^2}x + {\cos ^2}x = 1 \\
\Rightarrow 1 + {\tan ^2}x = {\sec ^2}x \\
\Rightarrow 1 + {\cot ^2}x = \cos e{c^2}x \;
$
Now, if take the identity $ 1 + {\tan ^2}x = {\sec ^2}x $ and subtract 1 on both LHS and RHS, we will get
$
\Rightarrow 1 + {\tan ^2}x - 1 = {\sec ^2}x - 1 \\
\Rightarrow {\tan ^2}x = {\sec ^2}x - 1 \;
$
So, we can say that the given equation is a trigonometric identity.
Now, let us see how it was derived.
So, the given equation is $ {\tan ^2}x = {\sec ^2}x - 1 $ .
Let us take the RHS of the given equation.
$ \Rightarrow RHS = {\sec ^2}x - 1 $ - - - - - - - - - (1)
Now, we know that sec is the inverse of cos. So, we can write sec as 1 divided by cos. Therefore, equation (1) becomes,
$ \Rightarrow RHS = \dfrac{1}{{{{\cos }^2}x}} - 1 $
Now, take LCM
$ \Rightarrow RHS = \dfrac{{1 - {{\cos }^2}x}}{{{{\cos }^2}x}} $ - - - - - - - - - - - (2)
Now, we have another identity $ {\sin ^2}x + {\cos ^2}x = 1 $ . So, if we subtract $ {\cos ^2}x $ on both LHS and RHS, we will get
$
\Rightarrow {\sin ^2}x + {\cos ^2}x - {\cos ^2}x = 1 - {\cos ^2}x \\
\Rightarrow 1 - {\cos ^2}x = {\sin ^2}x \;
$
Substituting this value in equation (2), we get
$ \Rightarrow RHS = \dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}} $
Now, we know that $ \dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta $ . Therefore,
$ \Rightarrow RHS = {\tan ^2}x $
$ \Rightarrow RHS = LHS $
Hence, the given identity is correct and we have seen its derivation.
Note: We can also prove the other identity $ 1 + {\cot ^2}x = \cos e{c^2}x $ .
Here, take the LHS of the equation, we get
$ LHS = 1 + {\cot ^2}x $
Now, $ \cot x = \dfrac{{\cos x}}{{\sin x}} $
$ LHS = 1 + \dfrac{{{{\cos }^2}x}}{{{{\sin }^2}x}} $
$ = \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x}} $
Now, we know that $ {\sin ^2}x + {\cos ^2}x = 1 $
$ LHS = \dfrac{1}{{{{\sin }^2}x}} = \cos e{c^2}x $
Hence, $ LHS = RHS $ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

