Answer
Verified
426k+ views
Hint: Whenever we have this type of question, one thing we need to remember is that the greatest integer function $\left[ x \right]$ breaks at integers which are usually discontinuous. So now we need to break the given limits as $ - 1 \to 0$ and $0 \to 1$ then do the integration to arrive at the required answer.
Complete step by step answer:
Here in this type of problems, finding the integration of the greatest integer function. Greatest integer function is also known as step function or floor function. One thing we need to remember is that the greatest integer function $\left[ x \right]$ breaks at integers which are usually discontinuous. Hence we can divide the given limit $ - 1 \to 1$ into two separate limit as $ - 1 \to 0$ and $0 \to 1$. therefore we can write the given function which is \[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\] as below.
\[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\]
Whenever we have limit $ - 1 \to 0$ the value inside the box or braces becomes $ - 1$ and in case of limit $0 \to 1$ we get the value inside the box or braces as $0$, which can be written as below.
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ {x + \left[ {x + \left[ { - 1} \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {x + \left[ {x + \left[ 0 \right]} \right]} \right]} dx\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ { - 1 + \left[ { - 1 + \left[ { - 1} \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {0 + \left[ {0 + \left[ 0 \right]} \right]} \right]} dx\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 { - 3} dx + \int\limits_0^1 0 dx\]
Now integrate the function, we get
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \left[ { - 3x} \right]_{ - 1}^0 + 0\]
Now apply the limit, and simplify the expression. We get
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = - 3(0 - ( - 1)) + 0\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = - 3(1) + 0 = - 3\]
Hence the integration of greatest integer function \[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\] is $ - 3$. Therefore, the option C is the correct answer.
Note:
Whenever we have this type of problems, first we need to know the concept of greatest integer function, integration and simplifying the limits. And when integrating the function you should be clear with the integration concepts then only you can get the correct answer, also when simplifying the limits be careful.
Complete step by step answer:
Here in this type of problems, finding the integration of the greatest integer function. Greatest integer function is also known as step function or floor function. One thing we need to remember is that the greatest integer function $\left[ x \right]$ breaks at integers which are usually discontinuous. Hence we can divide the given limit $ - 1 \to 1$ into two separate limit as $ - 1 \to 0$ and $0 \to 1$. therefore we can write the given function which is \[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\] as below.
\[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\]
Whenever we have limit $ - 1 \to 0$ the value inside the box or braces becomes $ - 1$ and in case of limit $0 \to 1$ we get the value inside the box or braces as $0$, which can be written as below.
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ {x + \left[ {x + \left[ { - 1} \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {x + \left[ {x + \left[ 0 \right]} \right]} \right]} dx\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 {\left[ { - 1 + \left[ { - 1 + \left[ { - 1} \right]} \right]} \right]} dx + \int\limits_0^1 {\left[ {0 + \left[ {0 + \left[ 0 \right]} \right]} \right]} dx\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \int\limits_{ - 1}^0 { - 3} dx + \int\limits_0^1 0 dx\]
Now integrate the function, we get
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = \left[ { - 3x} \right]_{ - 1}^0 + 0\]
Now apply the limit, and simplify the expression. We get
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = - 3(0 - ( - 1)) + 0\]
\[ \Rightarrow \int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx = - 3(1) + 0 = - 3\]
Hence the integration of greatest integer function \[\int\limits_{ - 1}^1 {\left[ {x + \left[ {x + \left[ x \right]} \right]} \right]} dx\] is $ - 3$. Therefore, the option C is the correct answer.
Note:
Whenever we have this type of problems, first we need to know the concept of greatest integer function, integration and simplifying the limits. And when integrating the function you should be clear with the integration concepts then only you can get the correct answer, also when simplifying the limits be careful.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE