
Integration of : \[\int {\dfrac{{\cos x - \cos 2x}}{{1 - \cos x}}} dx\]?
Answer
473.7k+ views
Hint: To solve this integration, we will first convert the whole expression in terms of \[{\cos ^n}x\]. For that, we will first convert \[\cos 2x\] and write it in terms of \[\cos x\] using the formula \[\cos 2x = 2{\cos ^2}x - 1\]. After that, we will have a quadratic equation in the numerator. Now, we will simplify the numerator by factorising and then cancel out some of the terms from numerator and denominator. After cancellation, we will be left with some terms in the numerator and then we will integrate them using the integration formulas and obtain our answer.
Complete step by step answer:
We need to integrate \[\int {\dfrac{{\cos x - \cos 2x}}{{1 - \cos x}}} dx\]
Let \[I = \int {\dfrac{{\cos x - \cos 2x}}{{1 - \cos x}}} dx\]
Now, convert this expression in terms of \[{\cos ^n}x\].
Using the formula \[\cos 2x = 2{\cos ^2}x - 1\], we have
\[ \Rightarrow I = \int {\dfrac{{\cos x - \left( {2{{\cos }^2}x - 1} \right)}}{{1 - \cos x}}} dx\]
Opening the brackets, we get
\[ \Rightarrow I = \int {\dfrac{{\cos x - 2{{\cos }^2}x + 1}}{{1 - \cos x}}} dx\]
Taking the negative sign common from the numerator and denominator respectively, we get
\[ \Rightarrow I = \int {\dfrac{{\left( - \right)\left( { - \cos x + 2{{\cos }^2}x - 1} \right)}}{{\left( - \right)\left( { - 1 + \cos x} \right)}}} dx\]
Cancelling out the negative sign, we get
\[ \Rightarrow I = \int {\dfrac{{\left( { - \cos x + 2{{\cos }^2}x - 1} \right)}}{{\left( { - 1 + \cos x} \right)}}} dx\]
Rearranging the terms, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {2{{\cos }^2}x - \cos x - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
We will factorise the numerator using Splitting the middle term formula.
We can write \[\cos x\] as \[2\cos x - \cos x\]
Hence, writing \[\cos x\] as \[2\cos x - \cos x\], we get
\[ \Rightarrow I = \int {\dfrac{{\left( {2{{\cos }^2}x - \left( {2\cos x - \cos x} \right) - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Now, opening the brackets in the numerator, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {2{{\cos }^2}x - 2\cos x + \cos x - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Now, combing first two terms and the last two terms together in the numerator, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {2{{\cos }^2}x - 2\cos x} \right) + \left( {\cos x - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Taking \[2\cos x\] common from the first two terms, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {2\cos x} \right)\left( {\cos x - 1} \right) + \left( {\cos x - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Using \[a = \left( 1 \right)\left( a \right)\], we can write \[\cos x - 1\] as \[\left( 1 \right)\left( {\cos x - 1} \right)\]. Hence, our expression becomes
\[ \Rightarrow I = \int {\dfrac{{\left( {2\cos x} \right)\left( {\cos x - 1} \right) + \left( 1 \right)\left( {\cos x - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Now, taking \[\left( {\cos x - 1} \right)\] common from the numerator, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {\cos x - 1} \right)\left( {2\cos x + 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Now, cancelling the term \[\left( {\cos x - 1} \right)\] from the numerator and denominator, we get
\[ \Rightarrow I = \int {\left( {2\cos x + 1} \right)} dx\]
Now, using \[\int {\left( {f\left( x \right) + g\left( x \right)} \right)} dx = \int {f\left( x \right)} dx + \int {g\left( x \right)} dx\], we get
\[ \Rightarrow I = \int {\left( {2\cos x} \right)} dx + \int {\left( 1 \right)} dx\]
Using the property \[\int {\left( {c.f\left( x \right)} \right)} dx = c\int {\left( {f\left( x \right)} \right)} dx\], where \[c\] is a constant, we get
\[ \Rightarrow I = 2\int {\left( {\cos x} \right)} dx + \int {\left( 1 \right)} dx\]
Now, using \[\int {\left( {\cos x} \right)} dx = \sin x + c\] and \[\int {\left( m \right)} dx = mx + c\], where \[m\] and \[c\] are the constant terms, we get
\[ \Rightarrow I = 2\left( {\sin x + {c_1}} \right) + \left( {1.x} \right) + {c_2}\], where \[{c_1}\] and \[{c_2}\] are constant terms.
Opening the brackets, we get
\[ \Rightarrow I = 2\sin x + 2{c_1} + x + {c_2}\], where \[{c_1}\] and \[{c_2}\] are constant terms.
Now combining the constant terms, we get
\[ \Rightarrow I = 2\sin x + x + \left( {2{c_1} + {c_2}} \right)\], where \[{c_1}\] and \[{c_2}\] are constant terms.
\[ \Rightarrow I = 2\sin x + x + c\], where \[c = \left( {2{c_1} + {c_2}} \right)\], where \[{c_1}\] and \[{c_2}\] are constant terms.
Hence, we get \[I = 2\sin x + x + c\], where \[c\] is a constant term.
Therefore, \[\int {\dfrac{{\cos x - \cos 2x}}{{1 - \cos x}}} dx = 2\sin x + x + c\], where \[c\] is a constant term.
Note: The indefinite integrals of certain functions may have more than one answer in different forms. We must remember some special types of integration methods like the one used in the question to solve complex problems with ease. However, all these forms are correct and interchangeable into one another. We should not forget to add an arbitrary constant to the answer of the indefinite integral. Indefinite integral gives us the family of curves as we don’t know the exact value of the arbitrary constant.
Complete step by step answer:
We need to integrate \[\int {\dfrac{{\cos x - \cos 2x}}{{1 - \cos x}}} dx\]
Let \[I = \int {\dfrac{{\cos x - \cos 2x}}{{1 - \cos x}}} dx\]
Now, convert this expression in terms of \[{\cos ^n}x\].
Using the formula \[\cos 2x = 2{\cos ^2}x - 1\], we have
\[ \Rightarrow I = \int {\dfrac{{\cos x - \left( {2{{\cos }^2}x - 1} \right)}}{{1 - \cos x}}} dx\]
Opening the brackets, we get
\[ \Rightarrow I = \int {\dfrac{{\cos x - 2{{\cos }^2}x + 1}}{{1 - \cos x}}} dx\]
Taking the negative sign common from the numerator and denominator respectively, we get
\[ \Rightarrow I = \int {\dfrac{{\left( - \right)\left( { - \cos x + 2{{\cos }^2}x - 1} \right)}}{{\left( - \right)\left( { - 1 + \cos x} \right)}}} dx\]
Cancelling out the negative sign, we get
\[ \Rightarrow I = \int {\dfrac{{\left( { - \cos x + 2{{\cos }^2}x - 1} \right)}}{{\left( { - 1 + \cos x} \right)}}} dx\]
Rearranging the terms, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {2{{\cos }^2}x - \cos x - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
We will factorise the numerator using Splitting the middle term formula.
We can write \[\cos x\] as \[2\cos x - \cos x\]
Hence, writing \[\cos x\] as \[2\cos x - \cos x\], we get
\[ \Rightarrow I = \int {\dfrac{{\left( {2{{\cos }^2}x - \left( {2\cos x - \cos x} \right) - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Now, opening the brackets in the numerator, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {2{{\cos }^2}x - 2\cos x + \cos x - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Now, combing first two terms and the last two terms together in the numerator, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {2{{\cos }^2}x - 2\cos x} \right) + \left( {\cos x - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Taking \[2\cos x\] common from the first two terms, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {2\cos x} \right)\left( {\cos x - 1} \right) + \left( {\cos x - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Using \[a = \left( 1 \right)\left( a \right)\], we can write \[\cos x - 1\] as \[\left( 1 \right)\left( {\cos x - 1} \right)\]. Hence, our expression becomes
\[ \Rightarrow I = \int {\dfrac{{\left( {2\cos x} \right)\left( {\cos x - 1} \right) + \left( 1 \right)\left( {\cos x - 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Now, taking \[\left( {\cos x - 1} \right)\] common from the numerator, we get
\[ \Rightarrow I = \int {\dfrac{{\left( {\cos x - 1} \right)\left( {2\cos x + 1} \right)}}{{\left( {\cos x - 1} \right)}}} dx\]
Now, cancelling the term \[\left( {\cos x - 1} \right)\] from the numerator and denominator, we get
\[ \Rightarrow I = \int {\left( {2\cos x + 1} \right)} dx\]
Now, using \[\int {\left( {f\left( x \right) + g\left( x \right)} \right)} dx = \int {f\left( x \right)} dx + \int {g\left( x \right)} dx\], we get
\[ \Rightarrow I = \int {\left( {2\cos x} \right)} dx + \int {\left( 1 \right)} dx\]
Using the property \[\int {\left( {c.f\left( x \right)} \right)} dx = c\int {\left( {f\left( x \right)} \right)} dx\], where \[c\] is a constant, we get
\[ \Rightarrow I = 2\int {\left( {\cos x} \right)} dx + \int {\left( 1 \right)} dx\]
Now, using \[\int {\left( {\cos x} \right)} dx = \sin x + c\] and \[\int {\left( m \right)} dx = mx + c\], where \[m\] and \[c\] are the constant terms, we get
\[ \Rightarrow I = 2\left( {\sin x + {c_1}} \right) + \left( {1.x} \right) + {c_2}\], where \[{c_1}\] and \[{c_2}\] are constant terms.
Opening the brackets, we get
\[ \Rightarrow I = 2\sin x + 2{c_1} + x + {c_2}\], where \[{c_1}\] and \[{c_2}\] are constant terms.
Now combining the constant terms, we get
\[ \Rightarrow I = 2\sin x + x + \left( {2{c_1} + {c_2}} \right)\], where \[{c_1}\] and \[{c_2}\] are constant terms.
\[ \Rightarrow I = 2\sin x + x + c\], where \[c = \left( {2{c_1} + {c_2}} \right)\], where \[{c_1}\] and \[{c_2}\] are constant terms.
Hence, we get \[I = 2\sin x + x + c\], where \[c\] is a constant term.
Therefore, \[\int {\dfrac{{\cos x - \cos 2x}}{{1 - \cos x}}} dx = 2\sin x + x + c\], where \[c\] is a constant term.
Note: The indefinite integrals of certain functions may have more than one answer in different forms. We must remember some special types of integration methods like the one used in the question to solve complex problems with ease. However, all these forms are correct and interchangeable into one another. We should not forget to add an arbitrary constant to the answer of the indefinite integral. Indefinite integral gives us the family of curves as we don’t know the exact value of the arbitrary constant.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

