
Integrating factor of $ \left( 1-{{x}^{2}} \right)\dfrac{dy}{dx}-xy=1 $ is:
A. $ 1-{{x}^{2}} $
B. $ \sqrt{1-{{x}^{2}}} $
C. $ \dfrac{1}{1-{{x}^{2}}} $
D. $ \dfrac{1}{\sqrt{1-{{x}^{2}}}} $
Answer
561.9k+ views
Hint: A differential equation of the from $ \dfrac{dy}{dx}+P\times y=Q $ , where P and Q are constants or functions of x only, is known as a first order linear differential equation.
Rearrange the terms of the given equation to reflect the standard form and identify the expression of the function P.
Find the Integrating Factor (F) by using the formula: $ F={{e}^{\int{P}\;dx}} $ .
Make appropriate substitution to simplify the integral. Recall that $ \int{\dfrac{1}{x}dx}=\log x+C $ .
Complete step-by-step answer:
The given first order ordinary differential equation is $ \left( 1-{{x}^{2}} \right)\dfrac{dy}{dx}-xy=1 $ .
We can observe that if we divide both sides by $ \left( 1-{{x}^{2}} \right) $ , we will be able to get it in the standard form $ \dfrac{dy}{dx}+P\times y=Q $ , where P and Q are constants or functions of x only.
⇒ $ \dfrac{dy}{dx}+\left( \dfrac{-x}{1-{{x}^{2}}} \right)y=\dfrac{1}{1-{{x}^{2}}} $
∴ $ P=\dfrac{-x}{1-{{x}^{2}}} $ .
Let's calculate $ \int{Pdx} $ .
$ \int{Pdx}=\int{\dfrac{-x}{1-{{x}^{2}}}dx} $
Substituting $ 1-{{x}^{2}}=t $ , so that $ -2xdx=dt $ , we get:
$ \int{Pdx}=\dfrac{1}{2}\int{\dfrac{1}{t}dt} $
Using $ \int{\dfrac{1}{x}dx}=\log x+C $ and ignoring the constant C, we get:
⇒ $ \int{Pdx}=\dfrac{1}{2}\log t $
Back substituting $ 1-{{x}^{2}}=t $ , we get:
⇒ $ \int{Pdx}=\dfrac{1}{2}\log \left( 1-{{x}^{2}} \right) $
Using $ a\log x=\log {{x}^{a}} $ , we can write it as:
⇒ $ \int{Pdx}=\log \sqrt{1-{{x}^{2}}} $
Now, the integrating factor will be:
$ F={{e}^{\int{P}\;dx}} $
⇒ $ F={{e}^{\log \sqrt{1-{{x}^{2}}}}} $
Knowing that $ {{e}^{\log a}}=a $ , it can be written as:
⇒ $ F=\sqrt{1-{{x}^{2}}} $ , which is the required integrating factor.
So, the correct answer is “ $ F=\sqrt{1-{{x}^{2}}} $ ”.
Note: An ordinary differential equation is a differential equation containing one or more functions of one independent variable and the derivatives of those functions.
Steps to solve a First Order Ordinary Linear Differential Equation:
Convert into the standard form $ \dfrac{dy}{dx}+P\times y=Q $ , where P and Q are constants or functions of x only.
Find the Integrating Factor (F) by using the formula: $ F={{e}^{\int{P}\;dx}} $ .
Write the solution using the formula: $ y\times F=\int{Q\times F\ dx}+C $ where C is the constant of integration.
Find the value of C by using the values of $ y(0) $ , $ y(1) $ etc.
Rearrange the terms of the given equation to reflect the standard form and identify the expression of the function P.
Find the Integrating Factor (F) by using the formula: $ F={{e}^{\int{P}\;dx}} $ .
Make appropriate substitution to simplify the integral. Recall that $ \int{\dfrac{1}{x}dx}=\log x+C $ .
Complete step-by-step answer:
The given first order ordinary differential equation is $ \left( 1-{{x}^{2}} \right)\dfrac{dy}{dx}-xy=1 $ .
We can observe that if we divide both sides by $ \left( 1-{{x}^{2}} \right) $ , we will be able to get it in the standard form $ \dfrac{dy}{dx}+P\times y=Q $ , where P and Q are constants or functions of x only.
⇒ $ \dfrac{dy}{dx}+\left( \dfrac{-x}{1-{{x}^{2}}} \right)y=\dfrac{1}{1-{{x}^{2}}} $
∴ $ P=\dfrac{-x}{1-{{x}^{2}}} $ .
Let's calculate $ \int{Pdx} $ .
$ \int{Pdx}=\int{\dfrac{-x}{1-{{x}^{2}}}dx} $
Substituting $ 1-{{x}^{2}}=t $ , so that $ -2xdx=dt $ , we get:
$ \int{Pdx}=\dfrac{1}{2}\int{\dfrac{1}{t}dt} $
Using $ \int{\dfrac{1}{x}dx}=\log x+C $ and ignoring the constant C, we get:
⇒ $ \int{Pdx}=\dfrac{1}{2}\log t $
Back substituting $ 1-{{x}^{2}}=t $ , we get:
⇒ $ \int{Pdx}=\dfrac{1}{2}\log \left( 1-{{x}^{2}} \right) $
Using $ a\log x=\log {{x}^{a}} $ , we can write it as:
⇒ $ \int{Pdx}=\log \sqrt{1-{{x}^{2}}} $
Now, the integrating factor will be:
$ F={{e}^{\int{P}\;dx}} $
⇒ $ F={{e}^{\log \sqrt{1-{{x}^{2}}}}} $
Knowing that $ {{e}^{\log a}}=a $ , it can be written as:
⇒ $ F=\sqrt{1-{{x}^{2}}} $ , which is the required integrating factor.
So, the correct answer is “ $ F=\sqrt{1-{{x}^{2}}} $ ”.
Note: An ordinary differential equation is a differential equation containing one or more functions of one independent variable and the derivatives of those functions.
Steps to solve a First Order Ordinary Linear Differential Equation:
Convert into the standard form $ \dfrac{dy}{dx}+P\times y=Q $ , where P and Q are constants or functions of x only.
Find the Integrating Factor (F) by using the formula: $ F={{e}^{\int{P}\;dx}} $ .
Write the solution using the formula: $ y\times F=\int{Q\times F\ dx}+C $ where C is the constant of integration.
Find the value of C by using the values of $ y(0) $ , $ y(1) $ etc.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

