
Integrate the given trigonometric function \[\int{\dfrac{1}{\sin x-\sin 2x}dx}\].
Answer
615.6k+ views
Hint: Use the formula $\sin 2x=2\sin x.\cos x$ and simplify the integral. And now use the substitution method. Substitute $\cos x$ with the variable ‘t’. You will get a polynomial in ‘t’. Then use partial fractions method for integrating.
Complete step-by-step solution -
We have to find \[\int{\dfrac{1}{\sin x-\sin 2x}dx}\]
We know, $\sin 2x=2\sin x.\cos x$.
Replacing $\sin 2x$ with $2\sin x.\cos x$, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{1}{\sin x-2\sin x\cos x}}\]
Taking $\sin x$ common in denominator, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{1}{\sin x\left( 1-2\cos x \right)}}dx\]
On multiplying and dividing by $\sin x$ in the integral, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}\]
Let us assume \[\int{\dfrac{1}{\sin x-\sin 2x}dx}=I\]
\[\Rightarrow I=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}..........\left( 1 \right)\]
Let us substitute a variable ‘t’ for $\cos x$,
i.e. $t=\cos x$
Differentiating both sides with respect to $x$, we will get,
$\Rightarrow \dfrac{dt}{dx}=\dfrac{d\cos x}{dx}$
We know, $\dfrac{d\cos x}{dx}=-\sin x$
$\Rightarrow \dfrac{dt}{dx}=-\sin x$
Multiplying both sides by $dx$, we will get,
$\Rightarrow dt=-\sin xdx..........\left( 2 \right)$
From equation (1),
\[\Rightarrow I=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}\]
We know,
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& {{\sin }^{2}}x=1-{{\cos }^{2}}x \\
\end{align}$
Putting ${{\sin }^{2}}x=1-{{\cos }^{2}}x$, we will get,
\[\Rightarrow I=\int{\dfrac{\sin xdx}{\left( 1-{{\cos }^{2}}x \right)\left( 1-2\cos x \right)}}\]
From equation (2),
$\begin{align}
& \Rightarrow dt=-\sin xdx \\
& \Rightarrow \sin xdx=-dt \\
\end{align}$
Putting $\sin xdx=-dt$ and $\cos x=t$, we will get,
\[I=\int{\dfrac{-dt}{\left( 1-{{t}^{2}} \right)\left( 1-2t \right)}}\]
Multiplying both numerator and denominator by -1 in integral, we will get,
\[I=\int{\dfrac{dt}{\left( 1-{{t}^{2}} \right)\left( 2t-1 \right)}}\]
We know ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
Using this, $\left( 1-{{t}^{2}} \right)=\left( 1-t \right)\left( 1+t \right)$,
\[I=\int{\dfrac{dt}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}}\]
Now, let us use partial fraction for further solving,
Let \[\dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}=\dfrac{A}{1+t}+\dfrac{B}{1-t}+\dfrac{C}{2t-1}\]
Taking LCM and adding in RHS, we will get,
\[\dfrac{1}{\left( 1+t \right)\left( 1-t \right)\left( 2t-1 \right)}=\dfrac{A\left( 1-t \right)\left( 2t-1 \right)+B\left( 1+t \right)\left( 2t-1 \right)+C\left( 1+t \right)\left( 1-t \right)}{\left( 1+t \right)\left( 1-t \right)\left( 2t-1 \right)}\]
Dividing both sides of equation by \[\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)\], we will get,
\[1=A\left( 1-t \right)\left( 2t-1 \right)+B\left( 1+t \right)\left( 2t-1 \right)+C\left( 1+t \right)\left( 1-t \right).......\left( 3 \right)\]
Putting $t=1$ in equation (3),
\[\begin{align}
& 1=A\left( 0 \right)+B\left( 2 \right)\left( 1 \right)+C\left( 0 \right) \\
& \Rightarrow 1=2B \\
& \Rightarrow B=\dfrac{1}{2} \\
\end{align}\]
Putting $t=-1$ in equation (3)
\[\begin{align}
& 1=A\left( 2 \right)\left( -3 \right)+B\left( 0 \right)+C\left( 0 \right) \\
& \Rightarrow 1=-6A \\
& \Rightarrow A=\dfrac{-1}{6} \\
\end{align}\]
Putting $t=\dfrac{1}{2}$ in equation (3),
\[\begin{align}
& 1=A\left( 1-\dfrac{1}{2} \right)\left( 0 \right)+B\left( 1+\dfrac{1}{2} \right)\left( 0 \right)+C\left( 1+\dfrac{1}{2} \right)\left( 1-\dfrac{1}{2} \right) \\
& \Rightarrow 1=C\left( \dfrac{3}{2} \right)\left( \dfrac{1}{2} \right) \\
& \Rightarrow 1=\dfrac{3C}{4} \\
& \Rightarrow C=\dfrac{4}{3} \\
& \Rightarrow \dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}=\dfrac{\dfrac{-1}{6}}{1+t}+\dfrac{\dfrac{1}{2}}{1-t}+\dfrac{\dfrac{4}{3}}{2t-1} \\
\end{align}\]
Putting the above value of \[\dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}\] in I, we will get,
$I=\int{\left[ \dfrac{A}{1+t}+\dfrac{B}{1-t}+\dfrac{C}{2t-1} \right]}dt$
We know,
$\begin{align}
& \int{\left( f\left( x \right)+g\left( x \right)+h\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}+\int{h\left( x \right)dx} \\
& \Rightarrow I=\int{\dfrac{A}{1+t}dt}+\int{\dfrac{B}{1-t}dt}+\int{\dfrac{C}{2t-1}dt} \\
\end{align}$
Taking constants outside the integration, we will get,
$I=A\int{\dfrac{1}{1+t}dt}+B\int{\dfrac{1}{1-t}dt}+C\int{\dfrac{1}{2t-1}dt}$
We know, $\int{\dfrac{1}{ax+b}=\dfrac{\ln \left| \left( ax+b \right) \right|}{a}}$
$\Rightarrow I=A\left[ \dfrac{\ln \left| \left( 1+t \right) \right|}{1} \right]+B\left[ \dfrac{\ln \left| \left( 1-t \right) \right|}{-1} \right]+C\left[ \dfrac{\ln \left| \left( 2t-1 \right) \right|}{1} \right]+K$
Putting values of A, B and C, we will get,
\[\begin{align}
& \Rightarrow I=\dfrac{-1}{6}\left( \ln \left| 1+t \right| \right)+\dfrac{1}{2}\left( \dfrac{\ln \left| \left( 1-t \right) \right|}{-1} \right)+\dfrac{4}{3}\left( \dfrac{\ln \left| \left( 2t-1 \right) \right|}{2} \right)+K \\
& \Rightarrow I=\dfrac{-1}{6}\left( \ln \left| 1+t \right| \right)-\dfrac{1}{2}\left( \ln \left| \left( 1-t \right) \right| \right)+\dfrac{2}{3}\left( \ln \left| \left( 2t-1 \right) \right| \right)+K \\
\end{align}\]
Now, putting $t=\cos x$, we will get,
\[\Rightarrow I=\dfrac{-1}{6}\ln \left| 1+\cos x \right|-\dfrac{1}{2}\ln \left| \left( 1-\cos x \right) \right|+\dfrac{2}{3}\ln \left| \left( 2\cos x-1 \right) \right|+K\]
Where K is a constant of integration.
Note: Don’t forget to add ‘K’ (the constant of integration). In the question of indefinite integral, it is necessary to add a constant of integration in the answer. Don’t forget to use modulus in the integration of $\dfrac{1}{ax+b}$. Integration of $\dfrac{1}{ax+b}$ with $dx$ is equal to $\ln \left| ax+b \right|+c\ \left( i.e.\ {{\log }_{e}}\ \text{of modulus of }\left( ax+b \right)+c \right)$.
Complete step-by-step solution -
We have to find \[\int{\dfrac{1}{\sin x-\sin 2x}dx}\]
We know, $\sin 2x=2\sin x.\cos x$.
Replacing $\sin 2x$ with $2\sin x.\cos x$, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{1}{\sin x-2\sin x\cos x}}\]
Taking $\sin x$ common in denominator, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{1}{\sin x\left( 1-2\cos x \right)}}dx\]
On multiplying and dividing by $\sin x$ in the integral, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}\]
Let us assume \[\int{\dfrac{1}{\sin x-\sin 2x}dx}=I\]
\[\Rightarrow I=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}..........\left( 1 \right)\]
Let us substitute a variable ‘t’ for $\cos x$,
i.e. $t=\cos x$
Differentiating both sides with respect to $x$, we will get,
$\Rightarrow \dfrac{dt}{dx}=\dfrac{d\cos x}{dx}$
We know, $\dfrac{d\cos x}{dx}=-\sin x$
$\Rightarrow \dfrac{dt}{dx}=-\sin x$
Multiplying both sides by $dx$, we will get,
$\Rightarrow dt=-\sin xdx..........\left( 2 \right)$
From equation (1),
\[\Rightarrow I=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}\]
We know,
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& {{\sin }^{2}}x=1-{{\cos }^{2}}x \\
\end{align}$
Putting ${{\sin }^{2}}x=1-{{\cos }^{2}}x$, we will get,
\[\Rightarrow I=\int{\dfrac{\sin xdx}{\left( 1-{{\cos }^{2}}x \right)\left( 1-2\cos x \right)}}\]
From equation (2),
$\begin{align}
& \Rightarrow dt=-\sin xdx \\
& \Rightarrow \sin xdx=-dt \\
\end{align}$
Putting $\sin xdx=-dt$ and $\cos x=t$, we will get,
\[I=\int{\dfrac{-dt}{\left( 1-{{t}^{2}} \right)\left( 1-2t \right)}}\]
Multiplying both numerator and denominator by -1 in integral, we will get,
\[I=\int{\dfrac{dt}{\left( 1-{{t}^{2}} \right)\left( 2t-1 \right)}}\]
We know ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
Using this, $\left( 1-{{t}^{2}} \right)=\left( 1-t \right)\left( 1+t \right)$,
\[I=\int{\dfrac{dt}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}}\]
Now, let us use partial fraction for further solving,
Let \[\dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}=\dfrac{A}{1+t}+\dfrac{B}{1-t}+\dfrac{C}{2t-1}\]
Taking LCM and adding in RHS, we will get,
\[\dfrac{1}{\left( 1+t \right)\left( 1-t \right)\left( 2t-1 \right)}=\dfrac{A\left( 1-t \right)\left( 2t-1 \right)+B\left( 1+t \right)\left( 2t-1 \right)+C\left( 1+t \right)\left( 1-t \right)}{\left( 1+t \right)\left( 1-t \right)\left( 2t-1 \right)}\]
Dividing both sides of equation by \[\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)\], we will get,
\[1=A\left( 1-t \right)\left( 2t-1 \right)+B\left( 1+t \right)\left( 2t-1 \right)+C\left( 1+t \right)\left( 1-t \right).......\left( 3 \right)\]
Putting $t=1$ in equation (3),
\[\begin{align}
& 1=A\left( 0 \right)+B\left( 2 \right)\left( 1 \right)+C\left( 0 \right) \\
& \Rightarrow 1=2B \\
& \Rightarrow B=\dfrac{1}{2} \\
\end{align}\]
Putting $t=-1$ in equation (3)
\[\begin{align}
& 1=A\left( 2 \right)\left( -3 \right)+B\left( 0 \right)+C\left( 0 \right) \\
& \Rightarrow 1=-6A \\
& \Rightarrow A=\dfrac{-1}{6} \\
\end{align}\]
Putting $t=\dfrac{1}{2}$ in equation (3),
\[\begin{align}
& 1=A\left( 1-\dfrac{1}{2} \right)\left( 0 \right)+B\left( 1+\dfrac{1}{2} \right)\left( 0 \right)+C\left( 1+\dfrac{1}{2} \right)\left( 1-\dfrac{1}{2} \right) \\
& \Rightarrow 1=C\left( \dfrac{3}{2} \right)\left( \dfrac{1}{2} \right) \\
& \Rightarrow 1=\dfrac{3C}{4} \\
& \Rightarrow C=\dfrac{4}{3} \\
& \Rightarrow \dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}=\dfrac{\dfrac{-1}{6}}{1+t}+\dfrac{\dfrac{1}{2}}{1-t}+\dfrac{\dfrac{4}{3}}{2t-1} \\
\end{align}\]
Putting the above value of \[\dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}\] in I, we will get,
$I=\int{\left[ \dfrac{A}{1+t}+\dfrac{B}{1-t}+\dfrac{C}{2t-1} \right]}dt$
We know,
$\begin{align}
& \int{\left( f\left( x \right)+g\left( x \right)+h\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}+\int{h\left( x \right)dx} \\
& \Rightarrow I=\int{\dfrac{A}{1+t}dt}+\int{\dfrac{B}{1-t}dt}+\int{\dfrac{C}{2t-1}dt} \\
\end{align}$
Taking constants outside the integration, we will get,
$I=A\int{\dfrac{1}{1+t}dt}+B\int{\dfrac{1}{1-t}dt}+C\int{\dfrac{1}{2t-1}dt}$
We know, $\int{\dfrac{1}{ax+b}=\dfrac{\ln \left| \left( ax+b \right) \right|}{a}}$
$\Rightarrow I=A\left[ \dfrac{\ln \left| \left( 1+t \right) \right|}{1} \right]+B\left[ \dfrac{\ln \left| \left( 1-t \right) \right|}{-1} \right]+C\left[ \dfrac{\ln \left| \left( 2t-1 \right) \right|}{1} \right]+K$
Putting values of A, B and C, we will get,
\[\begin{align}
& \Rightarrow I=\dfrac{-1}{6}\left( \ln \left| 1+t \right| \right)+\dfrac{1}{2}\left( \dfrac{\ln \left| \left( 1-t \right) \right|}{-1} \right)+\dfrac{4}{3}\left( \dfrac{\ln \left| \left( 2t-1 \right) \right|}{2} \right)+K \\
& \Rightarrow I=\dfrac{-1}{6}\left( \ln \left| 1+t \right| \right)-\dfrac{1}{2}\left( \ln \left| \left( 1-t \right) \right| \right)+\dfrac{2}{3}\left( \ln \left| \left( 2t-1 \right) \right| \right)+K \\
\end{align}\]
Now, putting $t=\cos x$, we will get,
\[\Rightarrow I=\dfrac{-1}{6}\ln \left| 1+\cos x \right|-\dfrac{1}{2}\ln \left| \left( 1-\cos x \right) \right|+\dfrac{2}{3}\ln \left| \left( 2\cos x-1 \right) \right|+K\]
Where K is a constant of integration.
Note: Don’t forget to add ‘K’ (the constant of integration). In the question of indefinite integral, it is necessary to add a constant of integration in the answer. Don’t forget to use modulus in the integration of $\dfrac{1}{ax+b}$. Integration of $\dfrac{1}{ax+b}$ with $dx$ is equal to $\ln \left| ax+b \right|+c\ \left( i.e.\ {{\log }_{e}}\ \text{of modulus of }\left( ax+b \right)+c \right)$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

