
Integrate the given trigonometric function \[\int{\dfrac{1}{\sin x-\sin 2x}dx}\].
Answer
597.3k+ views
Hint: Use the formula $\sin 2x=2\sin x.\cos x$ and simplify the integral. And now use the substitution method. Substitute $\cos x$ with the variable ‘t’. You will get a polynomial in ‘t’. Then use partial fractions method for integrating.
Complete step-by-step solution -
We have to find \[\int{\dfrac{1}{\sin x-\sin 2x}dx}\]
We know, $\sin 2x=2\sin x.\cos x$.
Replacing $\sin 2x$ with $2\sin x.\cos x$, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{1}{\sin x-2\sin x\cos x}}\]
Taking $\sin x$ common in denominator, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{1}{\sin x\left( 1-2\cos x \right)}}dx\]
On multiplying and dividing by $\sin x$ in the integral, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}\]
Let us assume \[\int{\dfrac{1}{\sin x-\sin 2x}dx}=I\]
\[\Rightarrow I=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}..........\left( 1 \right)\]
Let us substitute a variable ‘t’ for $\cos x$,
i.e. $t=\cos x$
Differentiating both sides with respect to $x$, we will get,
$\Rightarrow \dfrac{dt}{dx}=\dfrac{d\cos x}{dx}$
We know, $\dfrac{d\cos x}{dx}=-\sin x$
$\Rightarrow \dfrac{dt}{dx}=-\sin x$
Multiplying both sides by $dx$, we will get,
$\Rightarrow dt=-\sin xdx..........\left( 2 \right)$
From equation (1),
\[\Rightarrow I=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}\]
We know,
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& {{\sin }^{2}}x=1-{{\cos }^{2}}x \\
\end{align}$
Putting ${{\sin }^{2}}x=1-{{\cos }^{2}}x$, we will get,
\[\Rightarrow I=\int{\dfrac{\sin xdx}{\left( 1-{{\cos }^{2}}x \right)\left( 1-2\cos x \right)}}\]
From equation (2),
$\begin{align}
& \Rightarrow dt=-\sin xdx \\
& \Rightarrow \sin xdx=-dt \\
\end{align}$
Putting $\sin xdx=-dt$ and $\cos x=t$, we will get,
\[I=\int{\dfrac{-dt}{\left( 1-{{t}^{2}} \right)\left( 1-2t \right)}}\]
Multiplying both numerator and denominator by -1 in integral, we will get,
\[I=\int{\dfrac{dt}{\left( 1-{{t}^{2}} \right)\left( 2t-1 \right)}}\]
We know ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
Using this, $\left( 1-{{t}^{2}} \right)=\left( 1-t \right)\left( 1+t \right)$,
\[I=\int{\dfrac{dt}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}}\]
Now, let us use partial fraction for further solving,
Let \[\dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}=\dfrac{A}{1+t}+\dfrac{B}{1-t}+\dfrac{C}{2t-1}\]
Taking LCM and adding in RHS, we will get,
\[\dfrac{1}{\left( 1+t \right)\left( 1-t \right)\left( 2t-1 \right)}=\dfrac{A\left( 1-t \right)\left( 2t-1 \right)+B\left( 1+t \right)\left( 2t-1 \right)+C\left( 1+t \right)\left( 1-t \right)}{\left( 1+t \right)\left( 1-t \right)\left( 2t-1 \right)}\]
Dividing both sides of equation by \[\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)\], we will get,
\[1=A\left( 1-t \right)\left( 2t-1 \right)+B\left( 1+t \right)\left( 2t-1 \right)+C\left( 1+t \right)\left( 1-t \right).......\left( 3 \right)\]
Putting $t=1$ in equation (3),
\[\begin{align}
& 1=A\left( 0 \right)+B\left( 2 \right)\left( 1 \right)+C\left( 0 \right) \\
& \Rightarrow 1=2B \\
& \Rightarrow B=\dfrac{1}{2} \\
\end{align}\]
Putting $t=-1$ in equation (3)
\[\begin{align}
& 1=A\left( 2 \right)\left( -3 \right)+B\left( 0 \right)+C\left( 0 \right) \\
& \Rightarrow 1=-6A \\
& \Rightarrow A=\dfrac{-1}{6} \\
\end{align}\]
Putting $t=\dfrac{1}{2}$ in equation (3),
\[\begin{align}
& 1=A\left( 1-\dfrac{1}{2} \right)\left( 0 \right)+B\left( 1+\dfrac{1}{2} \right)\left( 0 \right)+C\left( 1+\dfrac{1}{2} \right)\left( 1-\dfrac{1}{2} \right) \\
& \Rightarrow 1=C\left( \dfrac{3}{2} \right)\left( \dfrac{1}{2} \right) \\
& \Rightarrow 1=\dfrac{3C}{4} \\
& \Rightarrow C=\dfrac{4}{3} \\
& \Rightarrow \dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}=\dfrac{\dfrac{-1}{6}}{1+t}+\dfrac{\dfrac{1}{2}}{1-t}+\dfrac{\dfrac{4}{3}}{2t-1} \\
\end{align}\]
Putting the above value of \[\dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}\] in I, we will get,
$I=\int{\left[ \dfrac{A}{1+t}+\dfrac{B}{1-t}+\dfrac{C}{2t-1} \right]}dt$
We know,
$\begin{align}
& \int{\left( f\left( x \right)+g\left( x \right)+h\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}+\int{h\left( x \right)dx} \\
& \Rightarrow I=\int{\dfrac{A}{1+t}dt}+\int{\dfrac{B}{1-t}dt}+\int{\dfrac{C}{2t-1}dt} \\
\end{align}$
Taking constants outside the integration, we will get,
$I=A\int{\dfrac{1}{1+t}dt}+B\int{\dfrac{1}{1-t}dt}+C\int{\dfrac{1}{2t-1}dt}$
We know, $\int{\dfrac{1}{ax+b}=\dfrac{\ln \left| \left( ax+b \right) \right|}{a}}$
$\Rightarrow I=A\left[ \dfrac{\ln \left| \left( 1+t \right) \right|}{1} \right]+B\left[ \dfrac{\ln \left| \left( 1-t \right) \right|}{-1} \right]+C\left[ \dfrac{\ln \left| \left( 2t-1 \right) \right|}{1} \right]+K$
Putting values of A, B and C, we will get,
\[\begin{align}
& \Rightarrow I=\dfrac{-1}{6}\left( \ln \left| 1+t \right| \right)+\dfrac{1}{2}\left( \dfrac{\ln \left| \left( 1-t \right) \right|}{-1} \right)+\dfrac{4}{3}\left( \dfrac{\ln \left| \left( 2t-1 \right) \right|}{2} \right)+K \\
& \Rightarrow I=\dfrac{-1}{6}\left( \ln \left| 1+t \right| \right)-\dfrac{1}{2}\left( \ln \left| \left( 1-t \right) \right| \right)+\dfrac{2}{3}\left( \ln \left| \left( 2t-1 \right) \right| \right)+K \\
\end{align}\]
Now, putting $t=\cos x$, we will get,
\[\Rightarrow I=\dfrac{-1}{6}\ln \left| 1+\cos x \right|-\dfrac{1}{2}\ln \left| \left( 1-\cos x \right) \right|+\dfrac{2}{3}\ln \left| \left( 2\cos x-1 \right) \right|+K\]
Where K is a constant of integration.
Note: Don’t forget to add ‘K’ (the constant of integration). In the question of indefinite integral, it is necessary to add a constant of integration in the answer. Don’t forget to use modulus in the integration of $\dfrac{1}{ax+b}$. Integration of $\dfrac{1}{ax+b}$ with $dx$ is equal to $\ln \left| ax+b \right|+c\ \left( i.e.\ {{\log }_{e}}\ \text{of modulus of }\left( ax+b \right)+c \right)$.
Complete step-by-step solution -
We have to find \[\int{\dfrac{1}{\sin x-\sin 2x}dx}\]
We know, $\sin 2x=2\sin x.\cos x$.
Replacing $\sin 2x$ with $2\sin x.\cos x$, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{1}{\sin x-2\sin x\cos x}}\]
Taking $\sin x$ common in denominator, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{1}{\sin x\left( 1-2\cos x \right)}}dx\]
On multiplying and dividing by $\sin x$ in the integral, we will get,
\[\int{\dfrac{1}{\sin x-\sin 2x}dx}=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}\]
Let us assume \[\int{\dfrac{1}{\sin x-\sin 2x}dx}=I\]
\[\Rightarrow I=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}..........\left( 1 \right)\]
Let us substitute a variable ‘t’ for $\cos x$,
i.e. $t=\cos x$
Differentiating both sides with respect to $x$, we will get,
$\Rightarrow \dfrac{dt}{dx}=\dfrac{d\cos x}{dx}$
We know, $\dfrac{d\cos x}{dx}=-\sin x$
$\Rightarrow \dfrac{dt}{dx}=-\sin x$
Multiplying both sides by $dx$, we will get,
$\Rightarrow dt=-\sin xdx..........\left( 2 \right)$
From equation (1),
\[\Rightarrow I=\int{\dfrac{\sin xdx}{{{\sin }^{2}}x\left( 1-2\cos x \right)}}\]
We know,
$\begin{align}
& {{\sin }^{2}}x+{{\cos }^{2}}x=1 \\
& {{\sin }^{2}}x=1-{{\cos }^{2}}x \\
\end{align}$
Putting ${{\sin }^{2}}x=1-{{\cos }^{2}}x$, we will get,
\[\Rightarrow I=\int{\dfrac{\sin xdx}{\left( 1-{{\cos }^{2}}x \right)\left( 1-2\cos x \right)}}\]
From equation (2),
$\begin{align}
& \Rightarrow dt=-\sin xdx \\
& \Rightarrow \sin xdx=-dt \\
\end{align}$
Putting $\sin xdx=-dt$ and $\cos x=t$, we will get,
\[I=\int{\dfrac{-dt}{\left( 1-{{t}^{2}} \right)\left( 1-2t \right)}}\]
Multiplying both numerator and denominator by -1 in integral, we will get,
\[I=\int{\dfrac{dt}{\left( 1-{{t}^{2}} \right)\left( 2t-1 \right)}}\]
We know ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
Using this, $\left( 1-{{t}^{2}} \right)=\left( 1-t \right)\left( 1+t \right)$,
\[I=\int{\dfrac{dt}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}}\]
Now, let us use partial fraction for further solving,
Let \[\dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}=\dfrac{A}{1+t}+\dfrac{B}{1-t}+\dfrac{C}{2t-1}\]
Taking LCM and adding in RHS, we will get,
\[\dfrac{1}{\left( 1+t \right)\left( 1-t \right)\left( 2t-1 \right)}=\dfrac{A\left( 1-t \right)\left( 2t-1 \right)+B\left( 1+t \right)\left( 2t-1 \right)+C\left( 1+t \right)\left( 1-t \right)}{\left( 1+t \right)\left( 1-t \right)\left( 2t-1 \right)}\]
Dividing both sides of equation by \[\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)\], we will get,
\[1=A\left( 1-t \right)\left( 2t-1 \right)+B\left( 1+t \right)\left( 2t-1 \right)+C\left( 1+t \right)\left( 1-t \right).......\left( 3 \right)\]
Putting $t=1$ in equation (3),
\[\begin{align}
& 1=A\left( 0 \right)+B\left( 2 \right)\left( 1 \right)+C\left( 0 \right) \\
& \Rightarrow 1=2B \\
& \Rightarrow B=\dfrac{1}{2} \\
\end{align}\]
Putting $t=-1$ in equation (3)
\[\begin{align}
& 1=A\left( 2 \right)\left( -3 \right)+B\left( 0 \right)+C\left( 0 \right) \\
& \Rightarrow 1=-6A \\
& \Rightarrow A=\dfrac{-1}{6} \\
\end{align}\]
Putting $t=\dfrac{1}{2}$ in equation (3),
\[\begin{align}
& 1=A\left( 1-\dfrac{1}{2} \right)\left( 0 \right)+B\left( 1+\dfrac{1}{2} \right)\left( 0 \right)+C\left( 1+\dfrac{1}{2} \right)\left( 1-\dfrac{1}{2} \right) \\
& \Rightarrow 1=C\left( \dfrac{3}{2} \right)\left( \dfrac{1}{2} \right) \\
& \Rightarrow 1=\dfrac{3C}{4} \\
& \Rightarrow C=\dfrac{4}{3} \\
& \Rightarrow \dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}=\dfrac{\dfrac{-1}{6}}{1+t}+\dfrac{\dfrac{1}{2}}{1-t}+\dfrac{\dfrac{4}{3}}{2t-1} \\
\end{align}\]
Putting the above value of \[\dfrac{1}{\left( 1-t \right)\left( 1+t \right)\left( 2t-1 \right)}\] in I, we will get,
$I=\int{\left[ \dfrac{A}{1+t}+\dfrac{B}{1-t}+\dfrac{C}{2t-1} \right]}dt$
We know,
$\begin{align}
& \int{\left( f\left( x \right)+g\left( x \right)+h\left( x \right) \right)dx}=\int{f\left( x \right)dx}+\int{g\left( x \right)dx}+\int{h\left( x \right)dx} \\
& \Rightarrow I=\int{\dfrac{A}{1+t}dt}+\int{\dfrac{B}{1-t}dt}+\int{\dfrac{C}{2t-1}dt} \\
\end{align}$
Taking constants outside the integration, we will get,
$I=A\int{\dfrac{1}{1+t}dt}+B\int{\dfrac{1}{1-t}dt}+C\int{\dfrac{1}{2t-1}dt}$
We know, $\int{\dfrac{1}{ax+b}=\dfrac{\ln \left| \left( ax+b \right) \right|}{a}}$
$\Rightarrow I=A\left[ \dfrac{\ln \left| \left( 1+t \right) \right|}{1} \right]+B\left[ \dfrac{\ln \left| \left( 1-t \right) \right|}{-1} \right]+C\left[ \dfrac{\ln \left| \left( 2t-1 \right) \right|}{1} \right]+K$
Putting values of A, B and C, we will get,
\[\begin{align}
& \Rightarrow I=\dfrac{-1}{6}\left( \ln \left| 1+t \right| \right)+\dfrac{1}{2}\left( \dfrac{\ln \left| \left( 1-t \right) \right|}{-1} \right)+\dfrac{4}{3}\left( \dfrac{\ln \left| \left( 2t-1 \right) \right|}{2} \right)+K \\
& \Rightarrow I=\dfrac{-1}{6}\left( \ln \left| 1+t \right| \right)-\dfrac{1}{2}\left( \ln \left| \left( 1-t \right) \right| \right)+\dfrac{2}{3}\left( \ln \left| \left( 2t-1 \right) \right| \right)+K \\
\end{align}\]
Now, putting $t=\cos x$, we will get,
\[\Rightarrow I=\dfrac{-1}{6}\ln \left| 1+\cos x \right|-\dfrac{1}{2}\ln \left| \left( 1-\cos x \right) \right|+\dfrac{2}{3}\ln \left| \left( 2\cos x-1 \right) \right|+K\]
Where K is a constant of integration.
Note: Don’t forget to add ‘K’ (the constant of integration). In the question of indefinite integral, it is necessary to add a constant of integration in the answer. Don’t forget to use modulus in the integration of $\dfrac{1}{ax+b}$. Integration of $\dfrac{1}{ax+b}$ with $dx$ is equal to $\ln \left| ax+b \right|+c\ \left( i.e.\ {{\log }_{e}}\ \text{of modulus of }\left( ax+b \right)+c \right)$.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

