
Integrate the given trigonometric expression.
\[\int{\dfrac{{{e}^{x}}.\cos 3x-{{4}^{x}}\tan 3x}{{{4}^{x}}.\cos 3x}}.dx\]
Answer
597.6k+ views
Hint: Get two fractions in subtraction, with dividing the numerator terms individually. Use property of surd \[{{\left( \dfrac{a}{b} \right)}^{n}}=\dfrac{{{a}^{n}}}{{{b}^{n}}}.\] Integration of\[{{a}^{x}}\], is given as\[\int{{{a}^{x}}dx=}\dfrac{{{a}^{x}}}{{{\log }_{e}}a}\]. Differentiation of \[\sec x\] is given as\[\sec x\tan x\], use this concept while using the substitution approach with the integration of the second term formed after separating the given expression in two individual terms.
Complete step-by-step solution -
Given integral in the question is
\[\int{\dfrac{{{e}^{x}}.\cos 3x-{{4}^{x}}\tan 3x}{{{4}^{x}}.\cos 3x}}.dx\]\[\to (1)\]
Let us divide \[{{e}^{x}}\cos 3x-{{4}^{x}}\tan 3x\] by\[{{4}^{x}}\cos 3x\], hence, we get
\[\begin{align}
& =\int{\left( \dfrac{{{e}^{x}}\cos 3x}{{{4}^{x}}\cos 3x}-\dfrac{{{4}^{x}}\tan 3x}{{{4}^{x}}\cos 3x} \right)}dx \\
& =\int{\left( \dfrac{{{e}^{x}}}{{{4}^{x}}}-\dfrac{\tan 3x}{\cos 3x} \right)dx} \\
\end{align}\]
We know that property of surds, given as
\[\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}\]
So, we can get integral with the help of above relation as
\[\begin{align}
& =\int{\left( {{\left( \dfrac{e}{4} \right)}^{x}}-\dfrac{\tan 3x}{\cos 3x} \right)dx} \\
& =\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx-\int{\dfrac{\tan 3x}{\cos 3x}dx}}\to (2) \\
\end{align}\]
Now, let us suppose the \[\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx}\]as\[{{\text{I}}_{1}}\], and \[\int{\dfrac{\tan 3x}{\cos 3x}dx}\]as\[{{\text{I}}_{\text{2}}}\]. So, let us calculate \[{{\text{I}}_{1}}\]and \[{{\text{I}}_{\text{2}}}\]one by one. So, we have
\[{{\text{I}}_{1}}=\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx}\]\[\to (3)\]
\[{{\text{I}}_{\text{2}}}=\int{\dfrac{\tan 3x}{\cos 3x}dx}\]\[\to (4)\]
So, let us calculate\[{{\text{I}}_{1}}\]as
\[{{\text{I}}_{1}}=\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx}\]
We know the integration of \[{{a}^{x}}\]is given as
\[\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{{{\log }_{e}}a}\]
Hence, value of \[{{\text{I}}_{1}}\]is given as
\[{{\text{I}}_{1}}=\dfrac{{{\left( \dfrac{e}{4} \right)}^{x}}}{{{\log }_{e}}\left( \dfrac{e}{4} \right)}+c\]
We know that the property of logarithm function is given as
\[{{\log }_{c}}\left( \dfrac{a}{b} \right)={{\log }_{c}}a-{{\log }_{c}}b\]
So, we get \[{{\text{I}}_{1}}\]as
\[{{\text{I}}_{1}}={{\left( \dfrac{e}{4} \right)}^{x}}\dfrac{1}{{{\log }_{e}}e-{{\log }_{e}}4}+c\]
We know \[{{\log }_{a}}a=1\]. So, we get value of \[{{\text{I}}_{1}}\]as
\[{{\text{I}}_{1}}=\dfrac{{{e}^{x}}}{{{4}^{x}}\left( 1-{{\log }_{e}}4 \right)}+c\]\[\to (5)\]
Now, we can evaluate value of \[{{\text{I}}_{\text{2}}}\]as
\[{{\text{I}}_{\text{2}}}=\int{\dfrac{\tan 3x}{\cos 3x}}dx\]\[\to (6)\]
Now, we know the relation between \[\cos \theta \]and \[\sec \theta \]is given as
\[\sec \theta =\dfrac{1}{\cos \theta }\]
Hence, integral \[{{\text{I}}_{\text{2}}}\]can be written as
\[{{\text{I}}_{\text{2}}}=\int{\sec 3x\tan 3x\text{ }dx}\]\[\to (7)\]
Now, suppose \[\sec 3x=t\]. Differentiate the above relation with respect to\['x'\]. We get
\[\dfrac{d}{dx}\left( \sec 3x \right)=\dfrac{dt}{dx}\]
We know that the derivative of \[\sec \theta \]is\[\sec \theta \tan \theta \]. Hence, we get
\[\begin{align}
& \dfrac{d}{dx}\left( \sec 3x \right)=\dfrac{dt}{dx} \\
& 3\sec 3x\tan 3x=\dfrac{dt}{dx} \\
\end{align}\]
\[\sec 3x\tan 3x\text{ }dx=\dfrac{dt}{3}\]\[\to (8)\]
Now, replacing \[\sec 3x\tan 3x\text{ }dx\]by \[\dfrac{dt}{3}\] in the expression\[{{\text{I}}_{\text{2}}}\]. So, we get
\[{{\text{I}}_{\text{2}}}=\int{\dfrac{dt}{3}}=\dfrac{t}{3}+c\]
Now, put \[t=\sec 3x\]to the above equation. So, we get
\[{{\text{I}}_{\text{2}}}=\dfrac{\sec 3x}{3}+c\]\[\to (9)\]
Hence, we get the integral of the given expression in the problem from the equation (2), (7) and (9) as
\[={{\left( \dfrac{e}{4} \right)}^{x}}\dfrac{1}{\left( 1-{{\log }_{e}}4 \right)}-\dfrac{\sec 3x}{3}+c\]
So, we get
\[\int{\dfrac{{{e}^{x}}\cos 3x-{{4}^{x}}\tan 3x}{{{4}^{x}}\cos 3x}}dx={{\left( \dfrac{e}{4} \right)}^{x}}\dfrac{1}{\left( 1-{{\log }_{e}}4 \right)}-\dfrac{\sec 3x}{3}+c\]
Note: One may get confused with the given term integral, as terms of exponential and trigonometric both are involved. So, one may think of applying integration by parts, which is a complex approach. Just find two fractions by dividing the numerators (in difference) by denominator individually.
Students make a lot of mistakes with the results of \[\int{{{a}^{x}}}dx\] and \[\dfrac{d}{dx}{{a}^{x}}\]. So, both are given as \[\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{{{\log }_{e}}a}\] and \[\dfrac{d}{dx}{{a}^{x}}={{a}^{x}}{{\log }_{e}}a\]. So, one may get confused with them.
Complete step-by-step solution -
Given integral in the question is
\[\int{\dfrac{{{e}^{x}}.\cos 3x-{{4}^{x}}\tan 3x}{{{4}^{x}}.\cos 3x}}.dx\]\[\to (1)\]
Let us divide \[{{e}^{x}}\cos 3x-{{4}^{x}}\tan 3x\] by\[{{4}^{x}}\cos 3x\], hence, we get
\[\begin{align}
& =\int{\left( \dfrac{{{e}^{x}}\cos 3x}{{{4}^{x}}\cos 3x}-\dfrac{{{4}^{x}}\tan 3x}{{{4}^{x}}\cos 3x} \right)}dx \\
& =\int{\left( \dfrac{{{e}^{x}}}{{{4}^{x}}}-\dfrac{\tan 3x}{\cos 3x} \right)dx} \\
\end{align}\]
We know that property of surds, given as
\[\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}\]
So, we can get integral with the help of above relation as
\[\begin{align}
& =\int{\left( {{\left( \dfrac{e}{4} \right)}^{x}}-\dfrac{\tan 3x}{\cos 3x} \right)dx} \\
& =\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx-\int{\dfrac{\tan 3x}{\cos 3x}dx}}\to (2) \\
\end{align}\]
Now, let us suppose the \[\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx}\]as\[{{\text{I}}_{1}}\], and \[\int{\dfrac{\tan 3x}{\cos 3x}dx}\]as\[{{\text{I}}_{\text{2}}}\]. So, let us calculate \[{{\text{I}}_{1}}\]and \[{{\text{I}}_{\text{2}}}\]one by one. So, we have
\[{{\text{I}}_{1}}=\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx}\]\[\to (3)\]
\[{{\text{I}}_{\text{2}}}=\int{\dfrac{\tan 3x}{\cos 3x}dx}\]\[\to (4)\]
So, let us calculate\[{{\text{I}}_{1}}\]as
\[{{\text{I}}_{1}}=\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx}\]
We know the integration of \[{{a}^{x}}\]is given as
\[\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{{{\log }_{e}}a}\]
Hence, value of \[{{\text{I}}_{1}}\]is given as
\[{{\text{I}}_{1}}=\dfrac{{{\left( \dfrac{e}{4} \right)}^{x}}}{{{\log }_{e}}\left( \dfrac{e}{4} \right)}+c\]
We know that the property of logarithm function is given as
\[{{\log }_{c}}\left( \dfrac{a}{b} \right)={{\log }_{c}}a-{{\log }_{c}}b\]
So, we get \[{{\text{I}}_{1}}\]as
\[{{\text{I}}_{1}}={{\left( \dfrac{e}{4} \right)}^{x}}\dfrac{1}{{{\log }_{e}}e-{{\log }_{e}}4}+c\]
We know \[{{\log }_{a}}a=1\]. So, we get value of \[{{\text{I}}_{1}}\]as
\[{{\text{I}}_{1}}=\dfrac{{{e}^{x}}}{{{4}^{x}}\left( 1-{{\log }_{e}}4 \right)}+c\]\[\to (5)\]
Now, we can evaluate value of \[{{\text{I}}_{\text{2}}}\]as
\[{{\text{I}}_{\text{2}}}=\int{\dfrac{\tan 3x}{\cos 3x}}dx\]\[\to (6)\]
Now, we know the relation between \[\cos \theta \]and \[\sec \theta \]is given as
\[\sec \theta =\dfrac{1}{\cos \theta }\]
Hence, integral \[{{\text{I}}_{\text{2}}}\]can be written as
\[{{\text{I}}_{\text{2}}}=\int{\sec 3x\tan 3x\text{ }dx}\]\[\to (7)\]
Now, suppose \[\sec 3x=t\]. Differentiate the above relation with respect to\['x'\]. We get
\[\dfrac{d}{dx}\left( \sec 3x \right)=\dfrac{dt}{dx}\]
We know that the derivative of \[\sec \theta \]is\[\sec \theta \tan \theta \]. Hence, we get
\[\begin{align}
& \dfrac{d}{dx}\left( \sec 3x \right)=\dfrac{dt}{dx} \\
& 3\sec 3x\tan 3x=\dfrac{dt}{dx} \\
\end{align}\]
\[\sec 3x\tan 3x\text{ }dx=\dfrac{dt}{3}\]\[\to (8)\]
Now, replacing \[\sec 3x\tan 3x\text{ }dx\]by \[\dfrac{dt}{3}\] in the expression\[{{\text{I}}_{\text{2}}}\]. So, we get
\[{{\text{I}}_{\text{2}}}=\int{\dfrac{dt}{3}}=\dfrac{t}{3}+c\]
Now, put \[t=\sec 3x\]to the above equation. So, we get
\[{{\text{I}}_{\text{2}}}=\dfrac{\sec 3x}{3}+c\]\[\to (9)\]
Hence, we get the integral of the given expression in the problem from the equation (2), (7) and (9) as
\[={{\left( \dfrac{e}{4} \right)}^{x}}\dfrac{1}{\left( 1-{{\log }_{e}}4 \right)}-\dfrac{\sec 3x}{3}+c\]
So, we get
\[\int{\dfrac{{{e}^{x}}\cos 3x-{{4}^{x}}\tan 3x}{{{4}^{x}}\cos 3x}}dx={{\left( \dfrac{e}{4} \right)}^{x}}\dfrac{1}{\left( 1-{{\log }_{e}}4 \right)}-\dfrac{\sec 3x}{3}+c\]
Note: One may get confused with the given term integral, as terms of exponential and trigonometric both are involved. So, one may think of applying integration by parts, which is a complex approach. Just find two fractions by dividing the numerators (in difference) by denominator individually.
Students make a lot of mistakes with the results of \[\int{{{a}^{x}}}dx\] and \[\dfrac{d}{dx}{{a}^{x}}\]. So, both are given as \[\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{{{\log }_{e}}a}\] and \[\dfrac{d}{dx}{{a}^{x}}={{a}^{x}}{{\log }_{e}}a\]. So, one may get confused with them.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

