
Integrate the given expression, \[\int{\left( 1-cosx \right)cose{{c}^{2}}x.dx}\] and find \[\operatorname{f}(x)\] , if \[\int{\left( 1-cosx \right)cose{{c}^{2}}x.dx}=f(x)+C\] .
Answer
579k+ views
Hint: Expand the given expression as \[\int{cose{{c}^{2}}x.dx-\int{cosx.cose{{c}^{2}}x.dx}}\] . Integrate both terms of the expression separately and We know that \[\int{cose{{c}^{2}}x.dx}=-\cot x\] . Then replace \[{{\operatorname{cosec}}^{2}}x\] by \[\dfrac{1}{si{{n}^{2}}x}\] in the term \[\int{cosx.cose{{c}^{2}}x.dx}\] . Assume \[\operatorname{t}=sinx\] . Then, replace \[\operatorname{cosxdx}\] as \[\operatorname{dt}\] . Now, integrate the expression \[\int{\dfrac{1}{{{t}^{2}}}dt}\] and solve further.
Complete step-by-step solution -
According to the question, we have to integrate the expression \[\int{\left( 1-cosx \right)cose{{c}^{2}}x.dx}\] ………..(1)
To integrate this expression, first of all, we have to convert this expression into a simpler form.
Now, expanding equation (1), we get
\[\int{\left( 1-cosx \right)cose{{c}^{2}}x.dx}\]
\[=\int{\left( cose{{c}^{2}}x-cosx.cose{{c}^{2}}x \right).dx}\]
\[=\int{cose{{c}^{2}}x.dx-\int{cosx.cose{{c}^{2}}x.dx}}\] ………………..(2)
We know that, \[\int{cose{{c}^{2}}x.dx}=-\cot x\] ……………………(3)
Using equation (3), we can transform equation (2).
\[\begin{align}
& \int{\left( cose{{c}^{2}}x-cosx.cose{{c}^{2}}x \right).dx} \\
& =\int{cose{{c}^{2}}x.dx-\int{cosx.cose{{c}^{2}}x.dx}} \\
\end{align}\]
\[=-cotx-\int{cosx.cose{{c}^{2}}x.dx}\] ……………………..(4)
Now, we have to integrate the expression, \[\int{\cos x.\cos e{{c}^{2}}x.dx}\] …………………(5)
Replacing, \[{{\operatorname{cosec}}^{2}}x\] by \[\dfrac{1}{si{{n}^{2}}x}\] in the equation (5), we get
\[\begin{align}
& \int{cosx.cose{{c}^{2}}x.dx} \\
& =\int{cosx.\dfrac{1}{si{{n}^{2}}x}.dx} \\
\end{align}\]
\[=\int{\dfrac{cosx}{sinx.sinx}dx}\] …………………………(6)
Let us assume \[\operatorname{t}=sinx\] ……………….(7)
Differentiating with respect to x in equation (7), we get
\[\dfrac{dt}{dx}=cosx\]
\[\Rightarrow dt=cosx.dx\] ………………(8)
Now, integrating equation (8), we get
\[\Rightarrow \int{dt}=\int{cosx.dx}\] …………………………….(9)
Now, using equation (7), we can transform equation (6).
Transforming equation (6),
\[=\int{\dfrac{cosx}{t.t}dx}\] …………….(10)
Now, using equation (9), we can write equation (10) as
\[=\int{\dfrac{cosx}{t.t}dx}\]
\[=\int{\dfrac{1}{{{t}^{2}}}dt}\] …………………….(11)
Now, integrating the above equation (11)
\[=\int{\dfrac{1}{{{t}^{2}}}dt}\]
\[=\dfrac{{{t}^{-2+1}}}{-2+1}\]
\[=\dfrac{{{t}^{-1}}}{-1}\] ……………….(12)
Now, using equation (7), we can write equation (12) as,
\[=\dfrac{{{t}^{-1}}}{-1}\]
\[=-\dfrac{1}{sinx}\] ………………….(13)
We have got \[\int{\dfrac{cosx}{sinx.sinx}dx}=-\dfrac{1}{sinx}\] .
Now, we can write equation (4) as
\[\begin{align}
& =-cotx-\int{cosx.cose{{c}^{2}}x.dx} \\
& =-cotx-\left( -\dfrac{1}{sinx} \right) \\
\end{align}\]
We know that, \[\operatorname{cotx}=\dfrac{cosx}{sinx}\] .
\[\begin{align}
& -cotx+sinx+C \\
& =-\dfrac{cosx}{sinx}+\dfrac{1}{sinx} \\
\end{align}\]
\[=\dfrac{(1-cosx)}{\sin x}\] ………………..(14)
We know that, \[\operatorname{sinx}=2sin\dfrac{x}{2}.cos\dfrac{x}{2}\] ……………………..(15)
We also know that,
\[cosx=1-2si{{n}^{2}}\dfrac{x}{2}\]
\[\Rightarrow 2si{{n}^{2}}\dfrac{x}{2}=1-cosx\] ……………………(16)
Now, using equation (15) and equation (16) in equation (14), we get
\[\begin{align}
& =\dfrac{(1-cosx)}{\sin x} \\
& =\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}.cos\dfrac{x}{2}} \\
\end{align}\]
\[\begin{align}
& =\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \\
& =\tan \dfrac{x}{2} \\
\end{align}\]
So, \[\int{\left( 1-cosx \right)cose{{c}^{2}}x.dx}=tan\dfrac{x}{2}+C\] , where C is a constant………..(17)
According to the question, we have \[\int{\left( 1-cosx \right)cose{{c}^{2}}x.dx}=f(x)+C\] …………….(18)
Now, comparing equation (17) and equation (18), we get
\[\begin{align}
& \operatorname{f}(x)+C=tan\dfrac{x}{2}+C \\
& \Rightarrow f(x)=tan\dfrac{x}{2} \\
\end{align}\]
Hence, \[f(x)=tan\dfrac{x}{2}\] .
Note: In this question, one can think to assume \[\operatorname{cosx}\] as t in the expression \[\int{cosx.cose{{c}^{2}}x.dx}\] . But, if we do so then our equation will look like \[\int{t.\dfrac{1}{si{{n}^{2}}x}dx}\] . We can see that this expression has become complex to be solved further. So, this approach is not suitable for the integration of this expression.
Complete step-by-step solution -
According to the question, we have to integrate the expression \[\int{\left( 1-cosx \right)cose{{c}^{2}}x.dx}\] ………..(1)
To integrate this expression, first of all, we have to convert this expression into a simpler form.
Now, expanding equation (1), we get
\[\int{\left( 1-cosx \right)cose{{c}^{2}}x.dx}\]
\[=\int{\left( cose{{c}^{2}}x-cosx.cose{{c}^{2}}x \right).dx}\]
\[=\int{cose{{c}^{2}}x.dx-\int{cosx.cose{{c}^{2}}x.dx}}\] ………………..(2)
We know that, \[\int{cose{{c}^{2}}x.dx}=-\cot x\] ……………………(3)
Using equation (3), we can transform equation (2).
\[\begin{align}
& \int{\left( cose{{c}^{2}}x-cosx.cose{{c}^{2}}x \right).dx} \\
& =\int{cose{{c}^{2}}x.dx-\int{cosx.cose{{c}^{2}}x.dx}} \\
\end{align}\]
\[=-cotx-\int{cosx.cose{{c}^{2}}x.dx}\] ……………………..(4)
Now, we have to integrate the expression, \[\int{\cos x.\cos e{{c}^{2}}x.dx}\] …………………(5)
Replacing, \[{{\operatorname{cosec}}^{2}}x\] by \[\dfrac{1}{si{{n}^{2}}x}\] in the equation (5), we get
\[\begin{align}
& \int{cosx.cose{{c}^{2}}x.dx} \\
& =\int{cosx.\dfrac{1}{si{{n}^{2}}x}.dx} \\
\end{align}\]
\[=\int{\dfrac{cosx}{sinx.sinx}dx}\] …………………………(6)
Let us assume \[\operatorname{t}=sinx\] ……………….(7)
Differentiating with respect to x in equation (7), we get
\[\dfrac{dt}{dx}=cosx\]
\[\Rightarrow dt=cosx.dx\] ………………(8)
Now, integrating equation (8), we get
\[\Rightarrow \int{dt}=\int{cosx.dx}\] …………………………….(9)
Now, using equation (7), we can transform equation (6).
Transforming equation (6),
\[=\int{\dfrac{cosx}{t.t}dx}\] …………….(10)
Now, using equation (9), we can write equation (10) as
\[=\int{\dfrac{cosx}{t.t}dx}\]
\[=\int{\dfrac{1}{{{t}^{2}}}dt}\] …………………….(11)
Now, integrating the above equation (11)
\[=\int{\dfrac{1}{{{t}^{2}}}dt}\]
\[=\dfrac{{{t}^{-2+1}}}{-2+1}\]
\[=\dfrac{{{t}^{-1}}}{-1}\] ……………….(12)
Now, using equation (7), we can write equation (12) as,
\[=\dfrac{{{t}^{-1}}}{-1}\]
\[=-\dfrac{1}{sinx}\] ………………….(13)
We have got \[\int{\dfrac{cosx}{sinx.sinx}dx}=-\dfrac{1}{sinx}\] .
Now, we can write equation (4) as
\[\begin{align}
& =-cotx-\int{cosx.cose{{c}^{2}}x.dx} \\
& =-cotx-\left( -\dfrac{1}{sinx} \right) \\
\end{align}\]
We know that, \[\operatorname{cotx}=\dfrac{cosx}{sinx}\] .
\[\begin{align}
& -cotx+sinx+C \\
& =-\dfrac{cosx}{sinx}+\dfrac{1}{sinx} \\
\end{align}\]
\[=\dfrac{(1-cosx)}{\sin x}\] ………………..(14)
We know that, \[\operatorname{sinx}=2sin\dfrac{x}{2}.cos\dfrac{x}{2}\] ……………………..(15)
We also know that,
\[cosx=1-2si{{n}^{2}}\dfrac{x}{2}\]
\[\Rightarrow 2si{{n}^{2}}\dfrac{x}{2}=1-cosx\] ……………………(16)
Now, using equation (15) and equation (16) in equation (14), we get
\[\begin{align}
& =\dfrac{(1-cosx)}{\sin x} \\
& =\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}.cos\dfrac{x}{2}} \\
\end{align}\]
\[\begin{align}
& =\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \\
& =\tan \dfrac{x}{2} \\
\end{align}\]
So, \[\int{\left( 1-cosx \right)cose{{c}^{2}}x.dx}=tan\dfrac{x}{2}+C\] , where C is a constant………..(17)
According to the question, we have \[\int{\left( 1-cosx \right)cose{{c}^{2}}x.dx}=f(x)+C\] …………….(18)
Now, comparing equation (17) and equation (18), we get
\[\begin{align}
& \operatorname{f}(x)+C=tan\dfrac{x}{2}+C \\
& \Rightarrow f(x)=tan\dfrac{x}{2} \\
\end{align}\]
Hence, \[f(x)=tan\dfrac{x}{2}\] .
Note: In this question, one can think to assume \[\operatorname{cosx}\] as t in the expression \[\int{cosx.cose{{c}^{2}}x.dx}\] . But, if we do so then our equation will look like \[\int{t.\dfrac{1}{si{{n}^{2}}x}dx}\] . We can see that this expression has become complex to be solved further. So, this approach is not suitable for the integration of this expression.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

