
Integrate the function $ {\tan ^2}\left( {2x - 3} \right) $ .
Answer
569.4k+ views
Hint: To solve this question first we should know that $ {\tan ^2}\theta = {\sec ^2}\theta - 1 $ , and if we integrate it individually then we will get the result. We majorly use integration by substitution in such questions to get the required , and do not forget to put the value of original variable at the last.
Complete step-by-step answer:
Given, the function is $ {\tan ^2}\left( {2x - 3} \right) $ .
Let $ {\text{I}} = \int {{{\tan }^2}\left( {2x - 3} \right)} {\text{d}}x $
As, $ {\tan ^2}\theta = {\sec ^2}\theta - 1 $
Here, $ \theta = 2x - 3 $ .
So,
$
\Rightarrow {\text{I}} = \int {{{\tan }^2}\left( {2x - 3} \right)} {\text{d}}x \\
\Rightarrow {\text{I}} = \int {\left( {{{\sec }^2}\left( {2x - 3} \right) - 1} \right)} {\text{d}}x \\
\Rightarrow {\text{I}} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x - \int {1 \cdot {\text{d}}x} \;
$
Let, $ {{\text{I}}_1} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x $
So, $ {\text{I}} = {{\text{I}}_1} - \int {1 \cdot {\text{d}}x} $ ………………….(i)
$ {{\text{I}}_1} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x $ ………….(ii)
Let, $ t = 2x - 3 $ .
Now, differentiate the above equation with respect to x.
\[
\dfrac{{{\text{d}}t}}{{{\text{d}}x}} = 2 \\
\dfrac{{dt}}{2} = {\text{d}}x \;
\]
Now, substitute the above value in the equation (ii) and also substitute the value of 2x-3 in the (ii) equation.
$
\Rightarrow {{\text{I}}_1} = \int {{{\sec }^2}} t\dfrac{{{\text{d}}t}}{2} \\
\Rightarrow {{\text{I}}_1} = \dfrac{1}{2}\int {{{\sec }^2}} t{\text{d}}t \;
$
As we know that $ \int {{{\sec }^2}} x{\text{d}}x = \tan x $ , so using this concept simplifies the above equation.
$ {{\text{I}}_1} = \dfrac{1}{2}\tan t + {C_1} $
Now, again substitute the value of t in the above equation.
$ {{\text{I}}_1} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} $
Now, substitute the above value in the equation (i).
$
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} - \int {1 \cdot {\text{d}}x} \\
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} - x + {C_2} \\
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C \;
$
So, when we integrate the function $ {\tan ^2}\left( {2x - 3} \right) $ , we the result as $ \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C $ .
So, the correct answer is “ $ \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C $ .”.
Note: Integration of Maths is a means of combining or summing up the elements to find the whole. It is a reverse differentiation process, where we reduce the functions into components. This approach is used to find a large scale for the summation. Both integration and differentiation are basic components of calculus..
Complete step-by-step answer:
Given, the function is $ {\tan ^2}\left( {2x - 3} \right) $ .
Let $ {\text{I}} = \int {{{\tan }^2}\left( {2x - 3} \right)} {\text{d}}x $
As, $ {\tan ^2}\theta = {\sec ^2}\theta - 1 $
Here, $ \theta = 2x - 3 $ .
So,
$
\Rightarrow {\text{I}} = \int {{{\tan }^2}\left( {2x - 3} \right)} {\text{d}}x \\
\Rightarrow {\text{I}} = \int {\left( {{{\sec }^2}\left( {2x - 3} \right) - 1} \right)} {\text{d}}x \\
\Rightarrow {\text{I}} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x - \int {1 \cdot {\text{d}}x} \;
$
Let, $ {{\text{I}}_1} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x $
So, $ {\text{I}} = {{\text{I}}_1} - \int {1 \cdot {\text{d}}x} $ ………………….(i)
$ {{\text{I}}_1} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x $ ………….(ii)
Let, $ t = 2x - 3 $ .
Now, differentiate the above equation with respect to x.
\[
\dfrac{{{\text{d}}t}}{{{\text{d}}x}} = 2 \\
\dfrac{{dt}}{2} = {\text{d}}x \;
\]
Now, substitute the above value in the equation (ii) and also substitute the value of 2x-3 in the (ii) equation.
$
\Rightarrow {{\text{I}}_1} = \int {{{\sec }^2}} t\dfrac{{{\text{d}}t}}{2} \\
\Rightarrow {{\text{I}}_1} = \dfrac{1}{2}\int {{{\sec }^2}} t{\text{d}}t \;
$
As we know that $ \int {{{\sec }^2}} x{\text{d}}x = \tan x $ , so using this concept simplifies the above equation.
$ {{\text{I}}_1} = \dfrac{1}{2}\tan t + {C_1} $
Now, again substitute the value of t in the above equation.
$ {{\text{I}}_1} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} $
Now, substitute the above value in the equation (i).
$
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} - \int {1 \cdot {\text{d}}x} \\
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} - x + {C_2} \\
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C \;
$
So, when we integrate the function $ {\tan ^2}\left( {2x - 3} \right) $ , we the result as $ \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C $ .
So, the correct answer is “ $ \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C $ .”.
Note: Integration of Maths is a means of combining or summing up the elements to find the whole. It is a reverse differentiation process, where we reduce the functions into components. This approach is used to find a large scale for the summation. Both integration and differentiation are basic components of calculus..
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

