
Integrate the function $ {\tan ^2}\left( {2x - 3} \right) $ .
Answer
505.2k+ views
Hint: To solve this question first we should know that $ {\tan ^2}\theta = {\sec ^2}\theta - 1 $ , and if we integrate it individually then we will get the result. We majorly use integration by substitution in such questions to get the required , and do not forget to put the value of original variable at the last.
Complete step-by-step answer:
Given, the function is $ {\tan ^2}\left( {2x - 3} \right) $ .
Let $ {\text{I}} = \int {{{\tan }^2}\left( {2x - 3} \right)} {\text{d}}x $
As, $ {\tan ^2}\theta = {\sec ^2}\theta - 1 $
Here, $ \theta = 2x - 3 $ .
So,
$
\Rightarrow {\text{I}} = \int {{{\tan }^2}\left( {2x - 3} \right)} {\text{d}}x \\
\Rightarrow {\text{I}} = \int {\left( {{{\sec }^2}\left( {2x - 3} \right) - 1} \right)} {\text{d}}x \\
\Rightarrow {\text{I}} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x - \int {1 \cdot {\text{d}}x} \;
$
Let, $ {{\text{I}}_1} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x $
So, $ {\text{I}} = {{\text{I}}_1} - \int {1 \cdot {\text{d}}x} $ ………………….(i)
$ {{\text{I}}_1} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x $ ………….(ii)
Let, $ t = 2x - 3 $ .
Now, differentiate the above equation with respect to x.
\[
\dfrac{{{\text{d}}t}}{{{\text{d}}x}} = 2 \\
\dfrac{{dt}}{2} = {\text{d}}x \;
\]
Now, substitute the above value in the equation (ii) and also substitute the value of 2x-3 in the (ii) equation.
$
\Rightarrow {{\text{I}}_1} = \int {{{\sec }^2}} t\dfrac{{{\text{d}}t}}{2} \\
\Rightarrow {{\text{I}}_1} = \dfrac{1}{2}\int {{{\sec }^2}} t{\text{d}}t \;
$
As we know that $ \int {{{\sec }^2}} x{\text{d}}x = \tan x $ , so using this concept simplifies the above equation.
$ {{\text{I}}_1} = \dfrac{1}{2}\tan t + {C_1} $
Now, again substitute the value of t in the above equation.
$ {{\text{I}}_1} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} $
Now, substitute the above value in the equation (i).
$
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} - \int {1 \cdot {\text{d}}x} \\
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} - x + {C_2} \\
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C \;
$
So, when we integrate the function $ {\tan ^2}\left( {2x - 3} \right) $ , we the result as $ \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C $ .
So, the correct answer is “ $ \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C $ .”.
Note: Integration of Maths is a means of combining or summing up the elements to find the whole. It is a reverse differentiation process, where we reduce the functions into components. This approach is used to find a large scale for the summation. Both integration and differentiation are basic components of calculus..
Complete step-by-step answer:
Given, the function is $ {\tan ^2}\left( {2x - 3} \right) $ .
Let $ {\text{I}} = \int {{{\tan }^2}\left( {2x - 3} \right)} {\text{d}}x $
As, $ {\tan ^2}\theta = {\sec ^2}\theta - 1 $
Here, $ \theta = 2x - 3 $ .
So,
$
\Rightarrow {\text{I}} = \int {{{\tan }^2}\left( {2x - 3} \right)} {\text{d}}x \\
\Rightarrow {\text{I}} = \int {\left( {{{\sec }^2}\left( {2x - 3} \right) - 1} \right)} {\text{d}}x \\
\Rightarrow {\text{I}} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x - \int {1 \cdot {\text{d}}x} \;
$
Let, $ {{\text{I}}_1} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x $
So, $ {\text{I}} = {{\text{I}}_1} - \int {1 \cdot {\text{d}}x} $ ………………….(i)
$ {{\text{I}}_1} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x $ ………….(ii)
Let, $ t = 2x - 3 $ .
Now, differentiate the above equation with respect to x.
\[
\dfrac{{{\text{d}}t}}{{{\text{d}}x}} = 2 \\
\dfrac{{dt}}{2} = {\text{d}}x \;
\]
Now, substitute the above value in the equation (ii) and also substitute the value of 2x-3 in the (ii) equation.
$
\Rightarrow {{\text{I}}_1} = \int {{{\sec }^2}} t\dfrac{{{\text{d}}t}}{2} \\
\Rightarrow {{\text{I}}_1} = \dfrac{1}{2}\int {{{\sec }^2}} t{\text{d}}t \;
$
As we know that $ \int {{{\sec }^2}} x{\text{d}}x = \tan x $ , so using this concept simplifies the above equation.
$ {{\text{I}}_1} = \dfrac{1}{2}\tan t + {C_1} $
Now, again substitute the value of t in the above equation.
$ {{\text{I}}_1} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} $
Now, substitute the above value in the equation (i).
$
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} - \int {1 \cdot {\text{d}}x} \\
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} - x + {C_2} \\
\Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C \;
$
So, when we integrate the function $ {\tan ^2}\left( {2x - 3} \right) $ , we the result as $ \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C $ .
So, the correct answer is “ $ \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C $ .”.
Note: Integration of Maths is a means of combining or summing up the elements to find the whole. It is a reverse differentiation process, where we reduce the functions into components. This approach is used to find a large scale for the summation. Both integration and differentiation are basic components of calculus..
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
