
Integrate the function, $\int{{{e}^{-x}}\csc x\left( 1+\cot x \right)dx}$
(a) ${{e}^{-x}}\csc x+C$
(b) $-{{e}^{-x}}\csc x+C$
(c) $-{{e}^{-x}}\left( \csc x+\cot x \right)+C$
(d) $-{{e}^{-x}}\left( \csc x+tanx \right)+C$
(e) $-{{e}^{-x}}\sec x+C$
Answer
615.6k+ views
Hint: First convert ${{e}^{-x}}\csc x\left( 1+\cot x \right)$ to $-{{e}^{-x}}\left(- \left( \csc x\cot x \right)-\csc x \right)$ then apply the formula,
$\int{{{e}^{-x}}\left( f'\left( x \right)-f\left( x \right) \right)={{e}^{-x}}f\left( x \right)+C}$, here f(x) is a function and ${{f}^{'}}\left( x \right)$ is obtained on differentiating.
Complete Step-by-Step solution:
In these types of question we have to use identity,
$\int{{{e}^{-x}}\left( f'\left( x \right)-f\left( x \right) \right)dx={{e}^{-x}}f\left( x \right)}$
Here in this case if f(x) be a function of x and $f'\left( x \right)$ will be a function we got after differentiation of f(x) with respect to x and it is of form ${{e}^{-x}}\left( {{f}^{'}}\left( x \right)-f\left( x \right) \right)$ then after integration it will become ${{e}^{-x}}f\left( x \right)$ .
In the given question, we have ${{e}^{-x}}\csc x\left( 1+\cot x \right)$ then we can write it as,
$-{{e}^{-x}}\left( \left( \csc x\cot x \right)-\csc x \right)........(i)$
Let us consider $\csc x$ be f(x). Then on differentiating f(x) we get,
$f'\left( x \right)=-\csc x\cot x$
So, we can write the expression (i) as,
$-{{e}^{-x}}\left( {{f}^{'}}\left( x \right)-f\left( x \right) \right)$
Here $f\left( x \right)=\csc x$.
So, applying the formula, $\int{{{e}^{-x}}\left( f'\left( x \right)-f\left( x \right) \right)dx={{e}^{-x}}f\left( x \right)}$, the integration of $-{{e}^{-x}}\left( \left( \csc x\cot x \right)-\csc x \right)$ will be represented as,
\[\int{-{{e}^{-x}}\left( \left( -\csc x\cot x \right)-\csc x \right)=}-{{e}^{-x}}\left( \csc x \right)+C\]
Therefore the value of the integration of function ${{e}^{-x}}\csc x\left( 1+\cot x \right)$ is $-{{e}^{-x}}\left( cscx \right)+C$.
Hence, the correct answer is option (b).
Note: Student should be careful while transforming the expression ${{e}^{-x}}\csc x\left( 1+\cot x \right)$ to \[-{{e}^{-x}}\left( \left( -\csc x\cot x \right)-\csc x \right)\]. This is the area where students generally can’t get the idea what to do, they should visualize using practise.
$\int{{{e}^{-x}}\left( f'\left( x \right)-f\left( x \right) \right)={{e}^{-x}}f\left( x \right)+C}$, here f(x) is a function and ${{f}^{'}}\left( x \right)$ is obtained on differentiating.
Complete Step-by-Step solution:
In these types of question we have to use identity,
$\int{{{e}^{-x}}\left( f'\left( x \right)-f\left( x \right) \right)dx={{e}^{-x}}f\left( x \right)}$
Here in this case if f(x) be a function of x and $f'\left( x \right)$ will be a function we got after differentiation of f(x) with respect to x and it is of form ${{e}^{-x}}\left( {{f}^{'}}\left( x \right)-f\left( x \right) \right)$ then after integration it will become ${{e}^{-x}}f\left( x \right)$ .
In the given question, we have ${{e}^{-x}}\csc x\left( 1+\cot x \right)$ then we can write it as,
$-{{e}^{-x}}\left( \left( \csc x\cot x \right)-\csc x \right)........(i)$
Let us consider $\csc x$ be f(x). Then on differentiating f(x) we get,
$f'\left( x \right)=-\csc x\cot x$
So, we can write the expression (i) as,
$-{{e}^{-x}}\left( {{f}^{'}}\left( x \right)-f\left( x \right) \right)$
Here $f\left( x \right)=\csc x$.
So, applying the formula, $\int{{{e}^{-x}}\left( f'\left( x \right)-f\left( x \right) \right)dx={{e}^{-x}}f\left( x \right)}$, the integration of $-{{e}^{-x}}\left( \left( \csc x\cot x \right)-\csc x \right)$ will be represented as,
\[\int{-{{e}^{-x}}\left( \left( -\csc x\cot x \right)-\csc x \right)=}-{{e}^{-x}}\left( \csc x \right)+C\]
Therefore the value of the integration of function ${{e}^{-x}}\csc x\left( 1+\cot x \right)$ is $-{{e}^{-x}}\left( cscx \right)+C$.
Hence, the correct answer is option (b).
Note: Student should be careful while transforming the expression ${{e}^{-x}}\csc x\left( 1+\cot x \right)$ to \[-{{e}^{-x}}\left( \left( -\csc x\cot x \right)-\csc x \right)\]. This is the area where students generally can’t get the idea what to do, they should visualize using practise.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

