
Integrate the following equation: \[\int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} \].
A. \[\dfrac{{{x^2}}}{2} + x - \dfrac{{38}}{3}\log \left| {x - 2} \right| + \dfrac{{61}}{6}\log \left| {2x - 1} \right| + C\]
B. Doesn’t exist
C. Cannot be determined
D. None of these
Answer
480.6k+ views
Hint: The given problem revolves around the concepts of integration. Keeping in mind, first of all dividing both the equations i.e. \[2{x^3} - 3{x^2} - 8x - 26\] and \[2{x^2} - 5x + 2\] respectively, as the dividend and divisor. Then, by separating the certain terms and using the partial fraction method i.e. \[\dfrac{{px + q}}{{\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right)}} = \dfrac{A}{{x + a}} + \dfrac{B}{{x + b}} + \dfrac{C}{{x + c}}\]. As a result, by using the formulae (or, rules) of the integration for the n terms such as \[\int {\dfrac{1}{x}dx} = \log x + c\], etc. and then substituting the values in the given equation, the desire solution is obtained.
Complete step by step answer:
Since, we have given the expression that
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} \] … (i)
Since, the power/degree is greater in numerator than that of the denominator,
Hence, simplifying the equation mathematically that is dividing the equation, we get,
\[2{x}^2-5x+2\overset{x+1}{\overline{\left){\begin{align}
& {2{x}^{3}}-3{{x}^{2}}-8x-26 \\
& \underline{{2{x}^{3}}-5{{x}^{2}+2x}} \\
& 2{{x}^{2}}-10x-26 \\
& \underline{2{{x}^{2}}-5x+2} \\
& -5x-28 \\
& \underline{6x-24} \\
& 0 \\
\end{align}}\right.}}\]
Quotient equals to \[x + 1\],
Remainder equals to \[ - 5x - 28\],
Dividend equals to \[2{x^3} - 3{x^2} - 8x - 26\],
And,
Divisor equals \[2{x^2} - 5x + 2\].
Hence, the equation (i) can be written/equals to
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \int {\left( {\left( {x + 1} \right) - \dfrac{{\left( {5x + 28} \right)}}{{2{x^2} - 5x + 2}}} \right)} dx\]
… (\[\because \dfrac{{{\text{Dividend}}}}{{{\text{Divisor}}}}{\text{ = Quotient}} \pm \dfrac{{{\text{Remainder}}}}{{{\text{Divisor}}}}\])
Separating the terms so as to integrate the equation, we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \int {xdx} + \int {dx} - \int {\dfrac{{5x + 28}}{{2{x^2} - 5x + 2}}} dx\]
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \int {xdx} + \int {dx} - \int {\dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}}} dx\]
… (\[\because 2{x^2} - 5x + 2 = 2{x^2} - 4x - x + 2 = 2x\left( {x - 2} \right) - 1\left( {x - 2} \right) = \left( {x - 2} \right)\left( {2x - 1} \right)\])
Hence, using the formula \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c} \] to find out the integration of first two terms in the above equation, we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \int {\dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}}} dx + {c_1} + {c_2}\] … (ii)
Where;
\[{c_1},{c_2}\] are the constants of first two (solved) integration,
Since, for \[\int {\dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}}} dx\] in the above equation,
$\because $We know that,
Integration for $\int {\dfrac{{px + q}}{{\left( {x - a} \right)\left( {x - b} \right)}}dx = } \int {\left( {\dfrac{A}{{x - a}} + \dfrac{B}{{\left( {x - b} \right)}}} \right)dx} $, we get
As a result, equating the certain terms (inside the integration sign), we get
\[\therefore \dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}} = \dfrac{A}{{x - 2}} + \dfrac{B}{{2x - 1}}\] … (iii)
\[\dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}} = \dfrac{{A\left( {2x - 1} \right) + B\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}}\]
Hence, the equation becomes
\[5x + 28 = A\left( {2x - 1} \right) + B\left( {x - 2} \right)\]
\[5x + 28 = 2Ax - A + Bx - 2B\]
Hence, equating the respective terms (or, equation), we get
\[5x + 28 = \left( {2A + B} \right)x + \left( { - A - 2B} \right)\]
Comparing the equation i.e. in quadratic form, we get
\[2A + B = 5\] … (iv)
And,
\[ - A - 2B = 28\] … (v)
As a result, solving these equations (iv) and (v) for the desire value, we get
Therefore, since, multiplying the equation (v) by \[2\], we get
\[ - 2A - 4B = 56\] … (vi)
Hence, adding the equations (iv) and (vi) simultaneously, we get
\[ - 3B = 61\]
\[B = - \dfrac{{61}}{3}\]
Now, hence substituting \[B = - \dfrac{{61}}{3}\] in equation (iv), we get
\[2A - \dfrac{{61}}{3} = 5\]
\[2A = 5 + \dfrac{{61}}{3} = \dfrac{{76}}{3}\]
The value of ‘A’ is,
\[A = \dfrac{{38}}{3}\]
Now,
Hence, substituting the values i.e. ‘\[A = \dfrac{{38}}{3}\]’ and ‘\[B = - \dfrac{{61}}{3}\]’ equation (iii), we get
\[\therefore \dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}} = \dfrac{{\dfrac{{38}}{3}}}{{x - 2}} - \dfrac{{\dfrac{{61}}{3}}}{{2x - 1}}\]
Now, hence substituting these values i.e. \[\dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}}\] in the equation (ii), we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \int {\left( {\dfrac{{\dfrac{{38}}{3}}}{{x - 2}} - \dfrac{{\dfrac{{61}}{3}}}{{2x - 1}}} \right)} dx + {c_1} + {c_2}\]
Again, separating the terms in the integration (as done previously), we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \dfrac{{38}}{3}\int {\dfrac{1}{{x - 2}}dx} + \dfrac{{61}}{3}\int {\dfrac{1}{{2x - 1}}} dx + {c_1} + {c_2}\]
Since, for the term \[\dfrac{1}{{2x - 1}}\], multiply and divide by ‘\[2\]’ in the above equation, so as to get the exact derivative of denominator in the numerator, we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \dfrac{{38}}{3}\int {\dfrac{1}{{x - 2}}dx} + \dfrac{{61}}{6}\int {\dfrac{2}{{2x - 1}}} dx + {c_1} + {c_2}\]
Now,
Here, we know that
\[\int {\dfrac{1}{x}dx} = \log x + c\]
\[\therefore \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c\], we get
Hence, implicating the formula, we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \dfrac{{38}}{3}\log \left| {x - 2} \right| + \dfrac{{61}}{6}\log \left| {2x - 1} \right| + {c_1} + {c_2} + {c_3} + {c_4}\]
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \dfrac{{38}}{3}\log \left| {x - 2} \right| + \dfrac{{61}}{6}\log \left| {2x - 1} \right| + C\]
Where, ${c_1},{c_2},{c_3},{c_4},...,{c_n}$ are the integration constants for the respective equation.
Hence, the solution!
$\therefore \Rightarrow $Option A is correct.6
Note: Particularly; in this case, remember that when the highest power in the numerator is greater than that of denominator, then divide the respective equations as we used to solve in previous classes i.e. by dividing the terms considering all the parameters such as quotient, remainder, dividend, divisor, etc. As a result, use of the formulae/condition that is “Integration by using Partial Fraction method” i.e. \[\dfrac{{px + q}}{{\left( {x + a} \right)\left( {x + b} \right)}} = \dfrac{A}{{x + a}} + \dfrac{B}{{x + b}}\] respectively (i.e. used when the derivatives contains the non-repeated linear factors). Also, remember the formulae such as $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$, \[\int {\dfrac{1}{x}dx} = \log x + c\], \[\int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c\], etc., so as to be sure of our final answer.
Complete step by step answer:
Since, we have given the expression that
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} \] … (i)
Since, the power/degree is greater in numerator than that of the denominator,
Hence, simplifying the equation mathematically that is dividing the equation, we get,
\[2{x}^2-5x+2\overset{x+1}{\overline{\left){\begin{align}
& {2{x}^{3}}-3{{x}^{2}}-8x-26 \\
& \underline{{2{x}^{3}}-5{{x}^{2}+2x}} \\
& 2{{x}^{2}}-10x-26 \\
& \underline{2{{x}^{2}}-5x+2} \\
& -5x-28 \\
& \underline{6x-24} \\
& 0 \\
\end{align}}\right.}}\]
Quotient equals to \[x + 1\],
Remainder equals to \[ - 5x - 28\],
Dividend equals to \[2{x^3} - 3{x^2} - 8x - 26\],
And,
Divisor equals \[2{x^2} - 5x + 2\].
Hence, the equation (i) can be written/equals to
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \int {\left( {\left( {x + 1} \right) - \dfrac{{\left( {5x + 28} \right)}}{{2{x^2} - 5x + 2}}} \right)} dx\]
… (\[\because \dfrac{{{\text{Dividend}}}}{{{\text{Divisor}}}}{\text{ = Quotient}} \pm \dfrac{{{\text{Remainder}}}}{{{\text{Divisor}}}}\])
Separating the terms so as to integrate the equation, we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \int {xdx} + \int {dx} - \int {\dfrac{{5x + 28}}{{2{x^2} - 5x + 2}}} dx\]
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \int {xdx} + \int {dx} - \int {\dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}}} dx\]
… (\[\because 2{x^2} - 5x + 2 = 2{x^2} - 4x - x + 2 = 2x\left( {x - 2} \right) - 1\left( {x - 2} \right) = \left( {x - 2} \right)\left( {2x - 1} \right)\])
Hence, using the formula \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c} \] to find out the integration of first two terms in the above equation, we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \int {\dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}}} dx + {c_1} + {c_2}\] … (ii)
Where;
\[{c_1},{c_2}\] are the constants of first two (solved) integration,
Since, for \[\int {\dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}}} dx\] in the above equation,
$\because $We know that,
Integration for $\int {\dfrac{{px + q}}{{\left( {x - a} \right)\left( {x - b} \right)}}dx = } \int {\left( {\dfrac{A}{{x - a}} + \dfrac{B}{{\left( {x - b} \right)}}} \right)dx} $, we get
As a result, equating the certain terms (inside the integration sign), we get
\[\therefore \dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}} = \dfrac{A}{{x - 2}} + \dfrac{B}{{2x - 1}}\] … (iii)
\[\dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}} = \dfrac{{A\left( {2x - 1} \right) + B\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}}\]
Hence, the equation becomes
\[5x + 28 = A\left( {2x - 1} \right) + B\left( {x - 2} \right)\]
\[5x + 28 = 2Ax - A + Bx - 2B\]
Hence, equating the respective terms (or, equation), we get
\[5x + 28 = \left( {2A + B} \right)x + \left( { - A - 2B} \right)\]
Comparing the equation i.e. in quadratic form, we get
\[2A + B = 5\] … (iv)
And,
\[ - A - 2B = 28\] … (v)
As a result, solving these equations (iv) and (v) for the desire value, we get
Therefore, since, multiplying the equation (v) by \[2\], we get
\[ - 2A - 4B = 56\] … (vi)
Hence, adding the equations (iv) and (vi) simultaneously, we get
\[ - 3B = 61\]
\[B = - \dfrac{{61}}{3}\]
Now, hence substituting \[B = - \dfrac{{61}}{3}\] in equation (iv), we get
\[2A - \dfrac{{61}}{3} = 5\]
\[2A = 5 + \dfrac{{61}}{3} = \dfrac{{76}}{3}\]
The value of ‘A’ is,
\[A = \dfrac{{38}}{3}\]
Now,
Hence, substituting the values i.e. ‘\[A = \dfrac{{38}}{3}\]’ and ‘\[B = - \dfrac{{61}}{3}\]’ equation (iii), we get
\[\therefore \dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}} = \dfrac{{\dfrac{{38}}{3}}}{{x - 2}} - \dfrac{{\dfrac{{61}}{3}}}{{2x - 1}}\]
Now, hence substituting these values i.e. \[\dfrac{{5x + 28}}{{\left( {x - 2} \right)\left( {2x - 1} \right)}}\] in the equation (ii), we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \int {\left( {\dfrac{{\dfrac{{38}}{3}}}{{x - 2}} - \dfrac{{\dfrac{{61}}{3}}}{{2x - 1}}} \right)} dx + {c_1} + {c_2}\]
Again, separating the terms in the integration (as done previously), we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \dfrac{{38}}{3}\int {\dfrac{1}{{x - 2}}dx} + \dfrac{{61}}{3}\int {\dfrac{1}{{2x - 1}}} dx + {c_1} + {c_2}\]
Since, for the term \[\dfrac{1}{{2x - 1}}\], multiply and divide by ‘\[2\]’ in the above equation, so as to get the exact derivative of denominator in the numerator, we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \dfrac{{38}}{3}\int {\dfrac{1}{{x - 2}}dx} + \dfrac{{61}}{6}\int {\dfrac{2}{{2x - 1}}} dx + {c_1} + {c_2}\]
Now,
Here, we know that
\[\int {\dfrac{1}{x}dx} = \log x + c\]
\[\therefore \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c\], we get
Hence, implicating the formula, we get
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \dfrac{{38}}{3}\log \left| {x - 2} \right| + \dfrac{{61}}{6}\log \left| {2x - 1} \right| + {c_1} + {c_2} + {c_3} + {c_4}\]
\[ \Rightarrow \int {\dfrac{{2{x^3} - 3{x^2} - 8x - 26}}{{2{x^2} - 5x + 2}}dx} = \dfrac{{{x^2}}}{2} + x - \dfrac{{38}}{3}\log \left| {x - 2} \right| + \dfrac{{61}}{6}\log \left| {2x - 1} \right| + C\]
Where, ${c_1},{c_2},{c_3},{c_4},...,{c_n}$ are the integration constants for the respective equation.
Hence, the solution!
$\therefore \Rightarrow $Option A is correct.6
Note: Particularly; in this case, remember that when the highest power in the numerator is greater than that of denominator, then divide the respective equations as we used to solve in previous classes i.e. by dividing the terms considering all the parameters such as quotient, remainder, dividend, divisor, etc. As a result, use of the formulae/condition that is “Integration by using Partial Fraction method” i.e. \[\dfrac{{px + q}}{{\left( {x + a} \right)\left( {x + b} \right)}} = \dfrac{A}{{x + a}} + \dfrac{B}{{x + b}}\] respectively (i.e. used when the derivatives contains the non-repeated linear factors). Also, remember the formulae such as $\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c$, \[\int {\dfrac{1}{x}dx} = \log x + c\], \[\int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c\], etc., so as to be sure of our final answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

