
Integrate the following equation: $\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} $.
(a) $\dfrac{1}{3}\log \left( {x - 1} \right) - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + c$
(b) $\dfrac{1}{3}\log \left( {x - 1} \right) - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + \dfrac{1}{{2{x^2}}} + c$
(c) $ - \dfrac{1}{3}\log \left( {x - 1} \right) + \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) - \dfrac{1}{{2{x^2}}} + c$
(d) None of these
Answer
501.3k+ views
Hint: The given problem revolves around the concepts of integration. Keeping in mind, first of all making the numerator as where we can separate the denominator, say, ${x^3} - \left( {{x^3} - 1} \right) = 1$. Then, the first term will be in complex condition which can be solving again by separating the numerator and denominator respectively, (will be in $\int {\dfrac{{dx}}{{\left( {x - a} \right)\left( {{x^2} + x + b} \right)}} = } \int {\left( {\dfrac{A}{{x - a}} + \dfrac{{Bx + C}}{{\left( {{x^2} + x + b} \right)}}} \right)dx} $ mode). Hence, finding the constant(s) A,B and C puts it in the condition. As a result, obtained the remaining terms by using the formulae (or, rules) of the integration for the n terms such as \[\int {\dfrac{1}{x}dx} = \log x + c\], and then substituting the values in the given expression, to obtained the desire solution.
Complete step-by-step answer:
Since, we have given the expression that
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} $
Simplifying the expression mathematically that is ${x^3} - \left( {{x^3} - 1} \right) = 1$, we get
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \int {\dfrac{{{x^3} - \left( {{x^3} - 1} \right)}}{{{x^3}\left( {{x^3} - 1} \right)}}dx} $
Separating the numerator and denominator, we get
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \int {\dfrac{{{x^3}}}{{{x^3}\left( {{x^3} - 1} \right)}}dx} - \int {\dfrac{{{x^3} - 1}}{{{x^3}\left( {{x^3} - 1} \right)}}dx} $
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \int {\dfrac{1}{{{x^3} - 1}}dx} - \int {\dfrac{1}{{{x^3}}}dx} $ … (i)
Now, let us find the integration by separating both the terms,
Therefore, let
${I_1} = \int {\dfrac{{dx}}{{{x^3} - 1}}} $
And,
${I_2} = \int {\dfrac{{dx}}{{{x^3}}}} $$\int {\dfrac{{dx}}{{\left( {x - a} \right)\left( {{x^2} + x + b} \right)}} = } \int {\left( {\dfrac{A}{{x - a}} + \dfrac{{Bx + C}}{{\left( {{x^2} + x + b} \right)}}} \right)dx} $
Equation (i) becomes
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = {I_1} - {I_2}$ … (ii)
First of solving ‘${I_1}$’, we get
${I_1} = \int {\dfrac{{dx}}{{{x^3} - 1}}} = \int {\dfrac{{dx}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}} $
$\because $We know that,
Integration for
The equation becomes,
\[{I_1} = \int {\dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}dx} = \int {\left( {\dfrac{A}{{x - 1}} + \dfrac{{Bx + C}}{{{x^2} + x + 1}}} \right)dx} \] … (iii)
Solving the equation mathematically, we get
\[\dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \dfrac{A}{{x - 1}} + \dfrac{{Bx + C}}{{{x^2} + x + 1}} = \dfrac{{A\left( {{x^2} + x + 1} \right) + \left( {Bx + C} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
Hence, equating the terms (or, equation), we get
\[1 = A\left( {{x^2} + x + 1} \right) + \left( {Bx + C} \right)\left( {x - 1} \right)\]
\[1 = A{x^2} + Ax + A + B{x^2} - Bx + Cx - C\]
Comparing the equation i.e. in quadratic form, we get
\[\left( 0 \right){x^2} + \left( 0 \right)x + 1 = \left( {A + B} \right){x^2} + \left( {A - B + C} \right)x + \left( {A - C} \right)\]
Equating the respective terms of certain quadratic equation i.e. of \[{x^2}\], $x$ and ${\text{constant}}$ respectively, we get
\[A + B = 0\] … (iv)
$A - B + C = 0$ … (v)
And, $A - C = 1$ … (vi)
As a result, solving these equations (iv), (v) and (vi) for the desire value, we get
Consider, equation (iv)
\[A + B = 0\]
$B = - A$ … (vii)
Hence, substituting $B = - A$ in equation (v), we get
$A + A + C = 0$
$2A + C = 0$ … (viii)
Now,
$\therefore $Solving i.e. adding the equations (vi) and (viii), we get
$3A = 1$
$A = \dfrac{1}{3}$
Substitute $A = \dfrac{1}{3}$ in equation (vii) and (vi) respectively, we get
$B = - \dfrac{1}{3}$
And,
\[\dfrac{1}{3} - 1 = C\]
\[C = \dfrac{{ - 2}}{3}\]
Now,
Hence, substituting all the values i.e. ‘A’, ‘B’ and ‘C’ equation (ii), we get
\[{I_1} = \int {\dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}dx} = \int {\left( {\dfrac{{\dfrac{1}{3}}}{{x - 1}} + \dfrac{{ - \dfrac{1}{3}x - \dfrac{2}{3}}}{{{x^2} + x + 1}}} \right)dx} \]
Solving the equation mathematically, we get
\[{I_1} = \int {\left[ {\dfrac{1}{{3\left( {x - 1} \right)}} - \dfrac{1}{3}\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)} \right]dx} \]
Separating the terms in the integration, we get
\[{I_1} = \dfrac{1}{3}\int {\dfrac{{dx}}{{x - 1}}} - \dfrac{1}{3}\int {\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)dx} \]
For separating the integration (to solve the equation easily),
\[{I_1} = {I_A} - {I_B}\] … (ix)
Where, ${I_A} = \dfrac{1}{3}\int {\dfrac{{dx}}{{x - 1}}} $ … (x)
And,
${I_B} = \dfrac{1}{3}\int {\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)dx} $ … (xi)
Considering the equation (x),
${I_A} = \dfrac{1}{3}\int {\dfrac{{dx}}{{x - 1}}} $
Since, we know that
\[\int {\dfrac{1}{x}dx} = \log x + c\]
\[\therefore \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c\], we get
The equation (x) becomes,
${I_A} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1}$ … (xii)
Where, ${c_1},{c_2},{c_3},....{c_n}$ are integration constants respectively!
Now, considering the equation (xi),
${I_B} = \dfrac{1}{3}\int {\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)dx} $
Multiply and divide the equation by $2$, we get
${I_B} = \dfrac{1}{6}\int {\left( {\dfrac{{2x + 4}}{{{x^2} + x + 1}}} \right)dx} $
Term inside the integration i.e. $2x + 4$ can also be written as,
${I_B} = \dfrac{1}{6}\int {\left( {\dfrac{{\left( {2x + 1} \right) + 3}}{{{x^2} + x + 1}}} \right)dx} $
Separating the terms, we get
${I_B} = \dfrac{1}{6}\int {\left( {\dfrac{{2x + 1}}{{{x^2} + x + 1}}} \right)dx} + \dfrac{3}{6}\int {\dfrac{1}{{{x^2} + x + 1}}dx} $
Now, hence it seems that in the first term, numerator is the exact derivative of the denominator i.e.
$f'\left( {{x^2} + x + 1} \right) = 2x + 1$
\[\therefore \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c\], we get
\[{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} + \dfrac{1}{2}\int {\dfrac{1}{{{x^2} + x + 1}}dx} \]
And, since considering the second term i.e. the denominator ${x^2} + x + 1$ we can also write ${\left( {x + \dfrac{1}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2}$ which seems that \[{\left( {x + \dfrac{1}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{4}} \right)^2} = {x^2} + 2x\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4} = {x^2} + x + 1\], we get
Hence, the equation (xi) becomes
\[{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_1}\dfrac{1}{2}\int {\dfrac{1}{{{{\left( {x + \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}dx} \]
Now, we know that
$\int {\dfrac{1}{{{x^2} + {a^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + c$
Hence, comparatively the equation becomes
\[{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} + \dfrac{1}{2} \times \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}{\tan ^{ - 1}}\left( {\dfrac{{x + \dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) + {c_3}\]
\[{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} + \dfrac{1}{2} \times \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{2x + 1}}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) + {c_3}\]
As a result, solving the equation mathematically, we get
\[{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_1} + \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_2}\] … (xiii)
From (xii) and (xiii),
Equation (ix) becomes,
\[{I_1} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1} - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_3}\] … (xiv)
Similarly,
Solving ‘${I_2}$’ i.e. ${I_2} = \int {\dfrac{{dx}}{{{x^3}}}} $, we get
${I_2} = \int {\dfrac{{dx}}{{{x^3}}}} = \int {{x^{ - 3}}dx} $
Since, we know that
\[\int {{x^n}dx} = \dfrac{{{x^n}}}{{{x^{n + 1}}}} + c\] where, ${c_1},{c_2},{c_3},....{c_n}$ are integration constants respectively!
Hence, the equation becomes
\[{I_2} = \int {\dfrac{{{x^{ - 3 + 1}}}}{{ - 3 + 1}}dx} \]
\[{I_2} = \int {\dfrac{{{x^{ - 2}}}}{{ - 2}}dx} \]
Mathematically solving the equation, we get
\[{I_2} = - \dfrac{1}{2}\int {\dfrac{1}{{{x^2}}}dx} \]
\[{I_2} = - \dfrac{1}{{2{x^2}}} + {c_4}\] … (xv)
As a result, from (xiv) and (xv)
Equation (i) becomes, we get
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1} - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_3} - \left( { - \dfrac{1}{{2{x^2}}} + {c_4}} \right)$$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1} - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_3} + \dfrac{1}{{2{x^2}}} - {c_4}$
Since, assuming $c = {c_1},{c_2},{c_3},.....$ as a constants of all the integration, we get
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \dfrac{1}{3}\log \left( {x - 1} \right) - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + \dfrac{1}{{2{x^2}}} + c$
$\therefore \Rightarrow $Option (b) is correct.
So, the correct answer is “Option b”.
Note: One must remember the concept of integration and its simultaneous formulae. As a result, to get the desired outcome, remember the condition i.e. $\int {\dfrac{{dx}}{{\left( {x - a} \right)\left( {{x^2} + x + b} \right)}} = } \int {\left( {\dfrac{A}{{x - a}} + \dfrac{{Bx + C}}{{\left( {{x^2} + x + b} \right)}}} \right)dx} $ in this case particular. Algebraically solving the equations/solution use (or, substitute) the formulae like $\int {\dfrac{1}{{{x^2} + {a^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + c$, \[\int {\dfrac{1}{x}dx} = \log x + c\], \[\int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c\], etc., so as to be sure of our final answer.
Complete step-by-step answer:
Since, we have given the expression that
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} $
Simplifying the expression mathematically that is ${x^3} - \left( {{x^3} - 1} \right) = 1$, we get
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \int {\dfrac{{{x^3} - \left( {{x^3} - 1} \right)}}{{{x^3}\left( {{x^3} - 1} \right)}}dx} $
Separating the numerator and denominator, we get
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \int {\dfrac{{{x^3}}}{{{x^3}\left( {{x^3} - 1} \right)}}dx} - \int {\dfrac{{{x^3} - 1}}{{{x^3}\left( {{x^3} - 1} \right)}}dx} $
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \int {\dfrac{1}{{{x^3} - 1}}dx} - \int {\dfrac{1}{{{x^3}}}dx} $ … (i)
Now, let us find the integration by separating both the terms,
Therefore, let
${I_1} = \int {\dfrac{{dx}}{{{x^3} - 1}}} $
And,
${I_2} = \int {\dfrac{{dx}}{{{x^3}}}} $$\int {\dfrac{{dx}}{{\left( {x - a} \right)\left( {{x^2} + x + b} \right)}} = } \int {\left( {\dfrac{A}{{x - a}} + \dfrac{{Bx + C}}{{\left( {{x^2} + x + b} \right)}}} \right)dx} $
Equation (i) becomes
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = {I_1} - {I_2}$ … (ii)
First of solving ‘${I_1}$’, we get
${I_1} = \int {\dfrac{{dx}}{{{x^3} - 1}}} = \int {\dfrac{{dx}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}} $
$\because $We know that,
Integration for
The equation becomes,
\[{I_1} = \int {\dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}dx} = \int {\left( {\dfrac{A}{{x - 1}} + \dfrac{{Bx + C}}{{{x^2} + x + 1}}} \right)dx} \] … (iii)
Solving the equation mathematically, we get
\[\dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \dfrac{A}{{x - 1}} + \dfrac{{Bx + C}}{{{x^2} + x + 1}} = \dfrac{{A\left( {{x^2} + x + 1} \right) + \left( {Bx + C} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]
Hence, equating the terms (or, equation), we get
\[1 = A\left( {{x^2} + x + 1} \right) + \left( {Bx + C} \right)\left( {x - 1} \right)\]
\[1 = A{x^2} + Ax + A + B{x^2} - Bx + Cx - C\]
Comparing the equation i.e. in quadratic form, we get
\[\left( 0 \right){x^2} + \left( 0 \right)x + 1 = \left( {A + B} \right){x^2} + \left( {A - B + C} \right)x + \left( {A - C} \right)\]
Equating the respective terms of certain quadratic equation i.e. of \[{x^2}\], $x$ and ${\text{constant}}$ respectively, we get
\[A + B = 0\] … (iv)
$A - B + C = 0$ … (v)
And, $A - C = 1$ … (vi)
As a result, solving these equations (iv), (v) and (vi) for the desire value, we get
Consider, equation (iv)
\[A + B = 0\]
$B = - A$ … (vii)
Hence, substituting $B = - A$ in equation (v), we get
$A + A + C = 0$
$2A + C = 0$ … (viii)
Now,
$\therefore $Solving i.e. adding the equations (vi) and (viii), we get
$3A = 1$
$A = \dfrac{1}{3}$
Substitute $A = \dfrac{1}{3}$ in equation (vii) and (vi) respectively, we get
$B = - \dfrac{1}{3}$
And,
\[\dfrac{1}{3} - 1 = C\]
\[C = \dfrac{{ - 2}}{3}\]
Now,
Hence, substituting all the values i.e. ‘A’, ‘B’ and ‘C’ equation (ii), we get
\[{I_1} = \int {\dfrac{1}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}dx} = \int {\left( {\dfrac{{\dfrac{1}{3}}}{{x - 1}} + \dfrac{{ - \dfrac{1}{3}x - \dfrac{2}{3}}}{{{x^2} + x + 1}}} \right)dx} \]
Solving the equation mathematically, we get
\[{I_1} = \int {\left[ {\dfrac{1}{{3\left( {x - 1} \right)}} - \dfrac{1}{3}\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)} \right]dx} \]
Separating the terms in the integration, we get
\[{I_1} = \dfrac{1}{3}\int {\dfrac{{dx}}{{x - 1}}} - \dfrac{1}{3}\int {\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)dx} \]
For separating the integration (to solve the equation easily),
\[{I_1} = {I_A} - {I_B}\] … (ix)
Where, ${I_A} = \dfrac{1}{3}\int {\dfrac{{dx}}{{x - 1}}} $ … (x)
And,
${I_B} = \dfrac{1}{3}\int {\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)dx} $ … (xi)
Considering the equation (x),
${I_A} = \dfrac{1}{3}\int {\dfrac{{dx}}{{x - 1}}} $
Since, we know that
\[\int {\dfrac{1}{x}dx} = \log x + c\]
\[\therefore \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c\], we get
The equation (x) becomes,
${I_A} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1}$ … (xii)
Where, ${c_1},{c_2},{c_3},....{c_n}$ are integration constants respectively!
Now, considering the equation (xi),
${I_B} = \dfrac{1}{3}\int {\left( {\dfrac{{x + 2}}{{{x^2} + x + 1}}} \right)dx} $
Multiply and divide the equation by $2$, we get
${I_B} = \dfrac{1}{6}\int {\left( {\dfrac{{2x + 4}}{{{x^2} + x + 1}}} \right)dx} $
Term inside the integration i.e. $2x + 4$ can also be written as,
${I_B} = \dfrac{1}{6}\int {\left( {\dfrac{{\left( {2x + 1} \right) + 3}}{{{x^2} + x + 1}}} \right)dx} $
Separating the terms, we get
${I_B} = \dfrac{1}{6}\int {\left( {\dfrac{{2x + 1}}{{{x^2} + x + 1}}} \right)dx} + \dfrac{3}{6}\int {\dfrac{1}{{{x^2} + x + 1}}dx} $
Now, hence it seems that in the first term, numerator is the exact derivative of the denominator i.e.
$f'\left( {{x^2} + x + 1} \right) = 2x + 1$
\[\therefore \int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c\], we get
\[{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} + \dfrac{1}{2}\int {\dfrac{1}{{{x^2} + x + 1}}dx} \]
And, since considering the second term i.e. the denominator ${x^2} + x + 1$ we can also write ${\left( {x + \dfrac{1}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2}$ which seems that \[{\left( {x + \dfrac{1}{2}} \right)^2} + {\left( {\dfrac{{\sqrt 3 }}{4}} \right)^2} = {x^2} + 2x\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4} = {x^2} + x + 1\], we get
Hence, the equation (xi) becomes
\[{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_1}\dfrac{1}{2}\int {\dfrac{1}{{{{\left( {x + \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}}dx} \]
Now, we know that
$\int {\dfrac{1}{{{x^2} + {a^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + c$
Hence, comparatively the equation becomes
\[{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} + \dfrac{1}{2} \times \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}{\tan ^{ - 1}}\left( {\dfrac{{x + \dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) + {c_3}\]
\[{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} + \dfrac{1}{2} \times \dfrac{2}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{2x + 1}}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}} \right) + {c_3}\]
As a result, solving the equation mathematically, we get
\[{I_B} = \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_1} + \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_2}\] … (xiii)
From (xii) and (xiii),
Equation (ix) becomes,
\[{I_1} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1} - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_3}\] … (xiv)
Similarly,
Solving ‘${I_2}$’ i.e. ${I_2} = \int {\dfrac{{dx}}{{{x^3}}}} $, we get
${I_2} = \int {\dfrac{{dx}}{{{x^3}}}} = \int {{x^{ - 3}}dx} $
Since, we know that
\[\int {{x^n}dx} = \dfrac{{{x^n}}}{{{x^{n + 1}}}} + c\] where, ${c_1},{c_2},{c_3},....{c_n}$ are integration constants respectively!
Hence, the equation becomes
\[{I_2} = \int {\dfrac{{{x^{ - 3 + 1}}}}{{ - 3 + 1}}dx} \]
\[{I_2} = \int {\dfrac{{{x^{ - 2}}}}{{ - 2}}dx} \]
Mathematically solving the equation, we get
\[{I_2} = - \dfrac{1}{2}\int {\dfrac{1}{{{x^2}}}dx} \]
\[{I_2} = - \dfrac{1}{{2{x^2}}} + {c_4}\] … (xv)
As a result, from (xiv) and (xv)
Equation (i) becomes, we get
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1} - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_3} - \left( { - \dfrac{1}{{2{x^2}}} + {c_4}} \right)$$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \dfrac{1}{3}\log \left( {x - 1} \right) + {c_1} - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) + {c_2} - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + {c_3} + \dfrac{1}{{2{x^2}}} - {c_4}$
Since, assuming $c = {c_1},{c_2},{c_3},.....$ as a constants of all the integration, we get
$\int {\dfrac{1}{{{x^3}\left( {{x^3} - 1} \right)}}dx} = \dfrac{1}{3}\log \left( {x - 1} \right) - \dfrac{1}{6}\log \left( {{x^2} + x + 1} \right) - \dfrac{1}{{\sqrt 3 }}{\tan ^{ - 1}}\left( {\dfrac{{2x + 1}}{{\sqrt 3 }}} \right) + \dfrac{1}{{2{x^2}}} + c$
$\therefore \Rightarrow $Option (b) is correct.
So, the correct answer is “Option b”.
Note: One must remember the concept of integration and its simultaneous formulae. As a result, to get the desired outcome, remember the condition i.e. $\int {\dfrac{{dx}}{{\left( {x - a} \right)\left( {{x^2} + x + b} \right)}} = } \int {\left( {\dfrac{A}{{x - a}} + \dfrac{{Bx + C}}{{\left( {{x^2} + x + b} \right)}}} \right)dx} $ in this case particular. Algebraically solving the equations/solution use (or, substitute) the formulae like $\int {\dfrac{1}{{{x^2} + {a^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\left( {\dfrac{x}{a}} \right) + c$, \[\int {\dfrac{1}{x}dx} = \log x + c\], \[\int {\dfrac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \log \left[ {f'\left( x \right)} \right] + c\], etc., so as to be sure of our final answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

