
How do you integrate \[{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)\]?
Answer
536.7k+ views
Hint: This type of question is based on the concept of integration by parts. Since the given function can be divided into two parts, we have to use integration by parts with respect to t, that is \[\int{udv=uv-\int{vdu}}\]. Here, we find that u= ln(t) and \[dv={{t}^{\dfrac{1}{2}}}dt\]. Integrate dv to find v and differentiate u to find du, with respect to t. then substitute in the formula of integration by parts. Using the power rule of integration that is \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\], solve the indefinite integration.
Complete step by step solution:
According to the question, we are asked to find the integral of \[{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)\].
We have been given the function is \[{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)\]. --------(1)
We find that the given function is with respect to t.
That is, we have to find \[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}\].
To integrate function (1), we have to use integration by parts.
We know that the formula for integration by parts is \[\int{udv=uv-\int{vdu}}\].
Here, let us consider u=ln(t) and \[dv={{t}^{\dfrac{1}{2}}}dt\].
We have to integrate dv with respect to t to find the value of v.
\[\Rightarrow \int{dv}=\int{\left( {{t}^{\dfrac{1}{2}}} \right)}dt\]
Using the power rule of integration that is \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\], we get
\[\int{dv}=\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}\]
We know that \[\int{dv=v}\]. Therefore, we get
\[v=\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}\]
On taking LCM in the power of the numerator and term in the denominator, we get
\[v=\dfrac{{{t}^{\dfrac{1+2}{2}}}}{\dfrac{1+2}{2}}\]
\[\Rightarrow v=\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}\]
Using the rule \[\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}\], we get
\[v=\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}\]
Now, consider u=ln(t).
Differentiate u with respect to t.
\[\dfrac{du}{dt}=\dfrac{d}{dt}\left( \ln \left( t \right) \right)\]
We know that \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\]. Using this rule of integration, we get
\[\dfrac{du}{dt}=\dfrac{1}{t}\]
Now, take the dt from the denominator of the LHS to the RHS, we get
\[\Rightarrow du=\dfrac{1}{t}dt\].
Now, substitute the value of u, v, du and dv in the integration by parts formula, that is \[\int{udv=uv-\int{vdu}}\].
\[\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\ln \left( t \right)\times \dfrac{2{{t}^{\dfrac{3}{2}}}}{3}-\int{\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}\times \dfrac{1}{t}dt}+c\]
\[\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\ln \left( t \right){{t}^{\dfrac{3}{2}}}-\int{\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}\times \dfrac{1}{t}dt}+c\]
Taking the constants out of the integration, we get
\[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\ln \left( t \right){{t}^{\dfrac{3}{2}}}-\dfrac{2}{3}\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}+c\] -------------(2)
Let us now consider \[\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}\].
We know that \[\dfrac{1}{x}={{x}^{-1}}\]. Using this rule in the integration, we get
\[\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{3}{2}}}\times {{t}^{-1}}dt}\]
Using the property of powers, that is \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\], we get
\[\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{3}{2}-1}}dt}\]
Now, we need to take the LCM in the power.
\[\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{3-2}{2}}}dt}\]
\[\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{1}{2}}}dt}\]
Using the power rule of integration that is \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\], we get
\[\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}\]
On taking LCM, we get
\[\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{{{t}^{\dfrac{1+2}{2}}}}{\dfrac{1+2}{2}}\]
\[\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}\]
Using the rule \[\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}\], we get
\[\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}\]
Substitute the value in equation (2).
\[\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\ln \left( t \right){{t}^{\dfrac{3}{2}}}-\dfrac{2}{3}\times \dfrac{2{{t}^{\dfrac{3}{2}}}}{3}+c\]
Let us now take \[\dfrac{2}{3}\] from the RHS. We get
\[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\left[ \ln \left( t \right){{t}^{\dfrac{3}{2}}}-\dfrac{2{{t}^{\dfrac{3}{2}}}}{3} \right]+c\].
We can also take \[{{t}^{\dfrac{3}{2}}}\] common from the RHS. We get
\[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\left[ \ln \left( t \right)-\dfrac{2}{3} \right]+c\]
Therefore, the integration of \[{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)\] is \[\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\left[ \ln \left( t \right)-\dfrac{2}{3} \right]+c\].
Note: We can further simplify the final answer obtained.
Take 3 as the LCM in the terms inside the bracket.
\[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\left[ \dfrac{3\ln \left( t \right)-2}{3} \right]+c\]
Now, take 3 outside the bracket from the denominator.
\[\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3\times 3}{{t}^{\dfrac{3}{2}}}\left[ 3\ln \left( t \right)-2 \right]+c\]
On further simplifications, we get
\[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{9}{{t}^{\dfrac{3}{2}}}\left[ 3\ln \left( t \right)-2 \right]+c\].
Complete step by step solution:
According to the question, we are asked to find the integral of \[{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)\].
We have been given the function is \[{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)\]. --------(1)
We find that the given function is with respect to t.
That is, we have to find \[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}\].
To integrate function (1), we have to use integration by parts.
We know that the formula for integration by parts is \[\int{udv=uv-\int{vdu}}\].
Here, let us consider u=ln(t) and \[dv={{t}^{\dfrac{1}{2}}}dt\].
We have to integrate dv with respect to t to find the value of v.
\[\Rightarrow \int{dv}=\int{\left( {{t}^{\dfrac{1}{2}}} \right)}dt\]
Using the power rule of integration that is \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\], we get
\[\int{dv}=\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}\]
We know that \[\int{dv=v}\]. Therefore, we get
\[v=\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}\]
On taking LCM in the power of the numerator and term in the denominator, we get
\[v=\dfrac{{{t}^{\dfrac{1+2}{2}}}}{\dfrac{1+2}{2}}\]
\[\Rightarrow v=\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}\]
Using the rule \[\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}\], we get
\[v=\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}\]
Now, consider u=ln(t).
Differentiate u with respect to t.
\[\dfrac{du}{dt}=\dfrac{d}{dt}\left( \ln \left( t \right) \right)\]
We know that \[\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}\]. Using this rule of integration, we get
\[\dfrac{du}{dt}=\dfrac{1}{t}\]
Now, take the dt from the denominator of the LHS to the RHS, we get
\[\Rightarrow du=\dfrac{1}{t}dt\].
Now, substitute the value of u, v, du and dv in the integration by parts formula, that is \[\int{udv=uv-\int{vdu}}\].
\[\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\ln \left( t \right)\times \dfrac{2{{t}^{\dfrac{3}{2}}}}{3}-\int{\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}\times \dfrac{1}{t}dt}+c\]
\[\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\ln \left( t \right){{t}^{\dfrac{3}{2}}}-\int{\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}\times \dfrac{1}{t}dt}+c\]
Taking the constants out of the integration, we get
\[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\ln \left( t \right){{t}^{\dfrac{3}{2}}}-\dfrac{2}{3}\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}+c\] -------------(2)
Let us now consider \[\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}\].
We know that \[\dfrac{1}{x}={{x}^{-1}}\]. Using this rule in the integration, we get
\[\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{3}{2}}}\times {{t}^{-1}}dt}\]
Using the property of powers, that is \[{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}\], we get
\[\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{3}{2}-1}}dt}\]
Now, we need to take the LCM in the power.
\[\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{3-2}{2}}}dt}\]
\[\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{1}{2}}}dt}\]
Using the power rule of integration that is \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\], we get
\[\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}\]
On taking LCM, we get
\[\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{{{t}^{\dfrac{1+2}{2}}}}{\dfrac{1+2}{2}}\]
\[\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}\]
Using the rule \[\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}\], we get
\[\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}\]
Substitute the value in equation (2).
\[\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\ln \left( t \right){{t}^{\dfrac{3}{2}}}-\dfrac{2}{3}\times \dfrac{2{{t}^{\dfrac{3}{2}}}}{3}+c\]
Let us now take \[\dfrac{2}{3}\] from the RHS. We get
\[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\left[ \ln \left( t \right){{t}^{\dfrac{3}{2}}}-\dfrac{2{{t}^{\dfrac{3}{2}}}}{3} \right]+c\].
We can also take \[{{t}^{\dfrac{3}{2}}}\] common from the RHS. We get
\[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\left[ \ln \left( t \right)-\dfrac{2}{3} \right]+c\]
Therefore, the integration of \[{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)\] is \[\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\left[ \ln \left( t \right)-\dfrac{2}{3} \right]+c\].
Note: We can further simplify the final answer obtained.
Take 3 as the LCM in the terms inside the bracket.
\[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\left[ \dfrac{3\ln \left( t \right)-2}{3} \right]+c\]
Now, take 3 outside the bracket from the denominator.
\[\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3\times 3}{{t}^{\dfrac{3}{2}}}\left[ 3\ln \left( t \right)-2 \right]+c\]
On further simplifications, we get
\[\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{9}{{t}^{\dfrac{3}{2}}}\left[ 3\ln \left( t \right)-2 \right]+c\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

