
Integrate: $\sqrt{\dfrac{2-x}{x}}$ $\left(0< x<2\right)$.
Answer
571.5k+ views
Hint: For this problem we will first take the substitution as $u=\sqrt{x}$ and calculate the value of $du$ by differentiating $u$ with respect to $x$. After finding the value of $du$, we will substitute the values we have in the integration of the given equation. After substituting the values and simplifying the obtained equation we can use the formula $\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}+C$ to get the result which is in terms of $u$. To get the answer in terms of $x$ we will again substitute the value of $u$ which is $u=\sqrt{x}$ in the integration value.
Complete step-by-step answer:
Given that, $\sqrt{\dfrac{2-x}{x}}$
Integrating the given equation with respect to $x$, then we have $\int{\sqrt{\dfrac{2-x}{x}}}dx$
Let us taking the substitution $u=\sqrt{x}$$\Rightarrow {{u}^{2}}=x$
Differentiating the value of $u$ with respect to $x$, then we will get
$\dfrac{du}{dx}=\dfrac{d}{dx}\left( \sqrt{x} \right)$
We can write square root of any function as the $\dfrac{1}{2}$ power of that function, then
$\dfrac{du}{dx}=\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)$
We have the differentiation value of ${{x}^{n}}$ as $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
$\begin{align}
& \therefore \dfrac{du}{dx}=\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1-2}{2}}} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}} \\
\end{align}$
We know that ${{a}^{-m}}=\dfrac{1}{{{a}^{m}}}$, then we will get
$\begin{align}
& \dfrac{du}{dx}=\dfrac{1}{2}\dfrac{1}{{{x}^{\dfrac{1}{2}}}} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2\sqrt{x}} \\
\end{align}$
From the value of $\dfrac{du}{dx}$ we can write $\dfrac{dx}{\sqrt{x}}=2du$
We have values $\dfrac{dx}{\sqrt{x}}=2du$, $u=\sqrt{x}$ and ${{u}^{2}}=x$. Substituting all those values in the integration, then we will get
$\begin{align}
& \int{\sqrt{\dfrac{2-x}{x}}}dx=\int{\dfrac{\sqrt{2-x}}{\sqrt{x}}dx} \\
& \Rightarrow \int{\sqrt{\dfrac{2-x}{x}}}dx=\int{2\sqrt{2-{{u}^{2}}}}du \\
& \Rightarrow \int{\sqrt{\dfrac{2-x}{x}}}dx=2\int{\sqrt{2-{{u}^{2}}}}du \\
\end{align}$
Now we have the formula $\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}+C$, then
$\int{\sqrt{{{\left( \sqrt{2} \right)}^{2}}-{{u}^{2}}}}du=\dfrac{u}{2}\sqrt{2-{{u}^{2}}}+\dfrac{{{\left( \sqrt{2} \right)}^{2}}}{2}{{\sin }^{-1}}\dfrac{u}{\sqrt{2}}+C$
Substituting the value of $u=\sqrt{x}$ in the above equation, then we will get
$\begin{align}
& \int{\sqrt{\dfrac{2-x}{x}}}dx=\dfrac{\sqrt{x}}{2}\sqrt{2-{{\left( \sqrt{x} \right)}^{2}}}+\dfrac{2}{2}{{\sin }^{-1}}\dfrac{\sqrt{x}}{\sqrt{2}}+C \\
& \Rightarrow \int{\sqrt{\dfrac{2-x}{x}}}dx=\dfrac{\sqrt{x}}{2}\sqrt{2-x}+{{\sin }^{-1}}\left( \sqrt{\dfrac{x}{2}} \right)+C \\
\end{align}$
Note: We can solve this problem not only by substituting $u=\sqrt{x}$ but also, we can solve this problem by taking the substitution $u=\dfrac{\sqrt{x}}{\sqrt{2-x}}$. If the take the substitution $u=\dfrac{\sqrt{x}}{\sqrt{2-x}}$ you need to work hard to get the value of $\dfrac{du}{dx}$ and we will get the integration value in terms of ${{\tan }^{-1}}$ function.
Complete step-by-step answer:
Given that, $\sqrt{\dfrac{2-x}{x}}$
Integrating the given equation with respect to $x$, then we have $\int{\sqrt{\dfrac{2-x}{x}}}dx$
Let us taking the substitution $u=\sqrt{x}$$\Rightarrow {{u}^{2}}=x$
Differentiating the value of $u$ with respect to $x$, then we will get
$\dfrac{du}{dx}=\dfrac{d}{dx}\left( \sqrt{x} \right)$
We can write square root of any function as the $\dfrac{1}{2}$ power of that function, then
$\dfrac{du}{dx}=\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)$
We have the differentiation value of ${{x}^{n}}$ as $\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}$
$\begin{align}
& \therefore \dfrac{du}{dx}=\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)=\dfrac{1}{2}{{x}^{\dfrac{1}{2}-1}} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{x}^{\dfrac{1-2}{2}}} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}} \\
\end{align}$
We know that ${{a}^{-m}}=\dfrac{1}{{{a}^{m}}}$, then we will get
$\begin{align}
& \dfrac{du}{dx}=\dfrac{1}{2}\dfrac{1}{{{x}^{\dfrac{1}{2}}}} \\
& \Rightarrow \dfrac{du}{dx}=\dfrac{1}{2\sqrt{x}} \\
\end{align}$
From the value of $\dfrac{du}{dx}$ we can write $\dfrac{dx}{\sqrt{x}}=2du$
We have values $\dfrac{dx}{\sqrt{x}}=2du$, $u=\sqrt{x}$ and ${{u}^{2}}=x$. Substituting all those values in the integration, then we will get
$\begin{align}
& \int{\sqrt{\dfrac{2-x}{x}}}dx=\int{\dfrac{\sqrt{2-x}}{\sqrt{x}}dx} \\
& \Rightarrow \int{\sqrt{\dfrac{2-x}{x}}}dx=\int{2\sqrt{2-{{u}^{2}}}}du \\
& \Rightarrow \int{\sqrt{\dfrac{2-x}{x}}}dx=2\int{\sqrt{2-{{u}^{2}}}}du \\
\end{align}$
Now we have the formula $\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}+C$, then
$\int{\sqrt{{{\left( \sqrt{2} \right)}^{2}}-{{u}^{2}}}}du=\dfrac{u}{2}\sqrt{2-{{u}^{2}}}+\dfrac{{{\left( \sqrt{2} \right)}^{2}}}{2}{{\sin }^{-1}}\dfrac{u}{\sqrt{2}}+C$
Substituting the value of $u=\sqrt{x}$ in the above equation, then we will get
$\begin{align}
& \int{\sqrt{\dfrac{2-x}{x}}}dx=\dfrac{\sqrt{x}}{2}\sqrt{2-{{\left( \sqrt{x} \right)}^{2}}}+\dfrac{2}{2}{{\sin }^{-1}}\dfrac{\sqrt{x}}{\sqrt{2}}+C \\
& \Rightarrow \int{\sqrt{\dfrac{2-x}{x}}}dx=\dfrac{\sqrt{x}}{2}\sqrt{2-x}+{{\sin }^{-1}}\left( \sqrt{\dfrac{x}{2}} \right)+C \\
\end{align}$
Note: We can solve this problem not only by substituting $u=\sqrt{x}$ but also, we can solve this problem by taking the substitution $u=\dfrac{\sqrt{x}}{\sqrt{2-x}}$. If the take the substitution $u=\dfrac{\sqrt{x}}{\sqrt{2-x}}$ you need to work hard to get the value of $\dfrac{du}{dx}$ and we will get the integration value in terms of ${{\tan }^{-1}}$ function.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

