
How do you integrate with respect to ?
Answer
467.4k+ views
Hint: In this question we have to find the integral of the given function, first multiply and divide with then assume the as , and then simplify the expression by using partial fractions, then we will get an expression that is easy to be integrated, so apply integration formula we will get the required value for the given expression.
Complete step by step answer:
Given and we have to integrate with respect to ,
Let,
,
Multiply and divide with , we get,
,
Now we know that, now substitute the value in the expression we get,
,
Let us consider ,
Now perform differentiate on both sides, we get,
,
Now deriving we get,
,
Now the given expression becomes,
,
We know that , then the expression becomes,
,
Now simplifying we get,
,
Now multiplying we get,
,
Now writing in terms of and , we get,
,
Now simplifying we get,
,
Now we know that , we get,
,
Now simplifying we get,
,
Now multiply and divide by , we get,
,
Now using the identity , we get,
,
Now simplifying we get,
,
Let us consider ,
Now deriving on both sides we get,
,
Now the expression becomes,
,
Now using performing partial fractions, we get, rewrite the expression we get,
,
Now taking L.C.M and simplifying we get,
,
Now simplifying we get,
,
Now comparing the two sides we get,
and
,
Now solving the two equations we get,
and ,
Now substitute the values in the expression we get,
,
Now separating the terms we get,
,
Now we can say that the above terms are in form of integrals,
,
So, from the integral formula we get,
,
Now we know that , substitute the value in the expression we get,
,
Now simplifying we get,
,
Now we know that ,
Now apply on both sides we get,
,
Now simplifying we get,
,
And we know that , and , so we get,
,
Now we know that , by substituting we get,
,
Now the expression becomes,
,
Now substituting the value of I we get,
,
So, the value of the given expression is,
,
Final Answer:
The value of the given expression is equal to .
Note: In this type of question we use both derivation and integration formulas as both are related to each other students should not get confused where to use the formulas and which one to use as there are many formulas in both derivation and integration. Some of the important formulas that are used are given below:
,
,
,
,
,
,
,
,
,
,
,
,
.
Complete step by step answer:
Given
Let,
Multiply and divide with
Now we know that,
Let us consider
Now perform differentiate on both sides, we get,
Now deriving we get,
Now the given expression becomes,
We know that
Now simplifying we get,
Now multiplying we get,
Now writing in terms of
Now simplifying we get,
Now we know that
Now simplifying we get,
Now multiply and divide by
Now using the identity
Now simplifying we get,
Let us consider
Now deriving on both sides we get,
Now the expression becomes,
Now using performing partial fractions, we get, rewrite the expression we get,
Now taking L.C.M and simplifying we get,
Now simplifying we get,
Now comparing the two sides we get,
Now solving the two equations we get,
Now substitute the values in the expression we get,
Now separating the terms we get,
Now we can say that the above terms are in form of
So, from the integral formula we get,
Now we know that
Now simplifying we get,
Now we know that
Now apply
Now simplifying we get,
And we know that
Now we know that
Now the expression becomes,
Now substituting the value of I we get,
So, the value of the given expression is,
Final Answer:
Note: In this type of question we use both derivation and integration formulas as both are related to each other students should not get confused where to use the formulas and which one to use as there are many formulas in both derivation and integration. Some of the important formulas that are used are given below:
Latest Vedantu courses for you
Grade 10 | CBSE | SCHOOL | English
Vedantu 10 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹37,300 per year
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE

Who discovered the cell and how class 12 biology CBSE
