
Integrate \[\log (\sin x + \cos x)dx\] from \[\dfrac{{ - \pi}}{4}\] to \[\dfrac{{\pi}}{4}\].
Answer
524.4k+ views
Hint: In order to determine the integral of the given logarithmic function, \[\log (\sin x + \cos x)dx\]. First, we have to compare the given function with the formula, \[\int\limits_b^a {f(x)dx = \int\limits_o^a {[f(x) + f( - x)]dx} } \]is continuous in interval\[\left[ { - a,a} \right]\], the process of finding integrals is called integration.
and also, the logarithmic formula is \[(\log a + \log b = \log ab)\]used to get the required solution.
Complete step-by-step answer:
We are given integrate the equation\[\log (\sin x + \cos x)dx\] with the interval from \[ - \dfrac{\pi }{4}\] to \[\dfrac{\pi }{4}\].
Now, consider, \[{\rm I} = \int\limits_{\dfrac{{ - \pi }}{4}}^{\dfrac{\pi }{4}} {\log (\sin x + \cos x)dx} \] ----------(1)
Let the function\[f(x)\] is continuous in interval [-a,a], then
\[\int\limits_b^a {f(x)dx = \int\limits_o^a {[f(x) + f( - x)]dx} } \]
\[{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {\log (\sin (x) + \cos (x)) + \log (\sin ( - x) + \cos ( - x))} \right]dx} \]
Expanding the bracket on RHS, since \[\cos ( - x) = \cos x\]but, \[\sin ( - x) = - \sin x\]
\[{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {\log (\sin x + \cos x) + \log (\cos x - \sin x)} \right]dx} \]
Accordingly, we get the logarithmic formula is \[(\log a + \log b = \log ab)\]
\[{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {\log (\sin x + \cos x)(\cos x - \sin x)} \right]dx} \]
We can write this as follows
\[{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\log ({{\cos }^2}x - {{\sin }^2}x)dx} \]
\[{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\log (\cos 2x)dx} \] --------(2)
Now, let us consider \[2x = t\]\[ \Rightarrow dx = \dfrac{{dt}}{2}\]
When \[x = 0\]then \[t = 0\]
When \[x = \dfrac{\pi }{4}\] then \[t = 2\left( {\dfrac{\pi }{4}} \right) \Rightarrow t = \dfrac{\pi }{2}\]
Now, we can substitute all the values in the equation (2), then
\[ \Rightarrow {\rm I} = \int\limits_0^t {\log (\cos t)dx} \]
\[ \Rightarrow {\rm I} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\cos t)\left( {\dfrac{{dt}}{2}} \right)} \]
\[ \Rightarrow {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\cos t)dt} \] --------- (3)
By symmetry we have the\[\log (\sin x)dx = {\rm I} = \log (\cos x)dx\] on the interval of \[\left[ {0,\dfrac{\pi }{2}} \right]\]. So this is true for any even or odd function on this interval. \[\int\limits_0^{\dfrac{\pi }{2}} {\log (\cos x)dx = {\rm I}} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx} \], as is an exercise from Demidovich problem in analysis. then
\[ \Rightarrow {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t)dt} \] --------- (4)
Here, adding the equation (3) and (4), we can get
\[ \Rightarrow {\rm I} + {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t + \cos t)dt} \]
since, \[(\log (a + b) = \log ab)\]
\[ \Rightarrow 2{\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t\cos t)dt} \]
\[ \Rightarrow 2{\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log \dfrac{{\sin 2t}}{2}dt} \]
Now, we can substitute back ‘t’ value, we can get
\[ \Rightarrow 2{\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {(\log (\sin 2x) - \log 2)dx} \]
From the equation (4) \[ \Rightarrow {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t)dt} \] where, \[t = 2x\], we can get
\[ \Rightarrow 2{\rm I} = {\rm I} - \left( {\dfrac{1}{2}} \right)\dfrac{\pi }{2}\log 2\]
By subtracting ‘\[{\rm I}\]’ on both sides of the equation, now
\[
\Rightarrow 2{\rm I} - {\rm I} = - \dfrac{\pi }{4}\log 2 \\
\Rightarrow {\rm I} = - \dfrac{\pi }{4}\log 2 \\
\]
Therefore, \[{\rm I} = - \dfrac{\pi }{4}\log {e^2}\]
Hence, Integrate\[\log (\sin x + \cos x)dx\]from\[\dfrac{{ - \pi}}{4}\]to\[\dfrac{{\pi}}{4}\] is \[{\rm I} = - \dfrac{\pi }{4}\log {e^2}\]
Note: we note that an exercise from Demidovich problem in analysis we have to remind is\[\int\limits_0^{\dfrac{\pi }{2}} {\log (\cos x)dx = {\rm I}} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx} \].
In integral, there are two types of integrals in maths are definite integral and Indefinite integral
Definite Integral: An integral that contains the upper and lower limits then it is a definite integral. On a real line, x is restricted to lie. Riemann Integral is the other name of the Definite Integral.A definite Integral is represented as: \[\int\limits_a^b {f(x)dx} \]
Indefinite Integral : Indefinite integrals are defined without upper and lower limits. It is represented as: \[\smallint f(x)dx = F(x) + C\]. Where C is any constant and the function \[f\left( x \right)\]is called the integrand.
and also, the logarithmic formula is \[(\log a + \log b = \log ab)\]used to get the required solution.
Complete step-by-step answer:
We are given integrate the equation\[\log (\sin x + \cos x)dx\] with the interval from \[ - \dfrac{\pi }{4}\] to \[\dfrac{\pi }{4}\].
Now, consider, \[{\rm I} = \int\limits_{\dfrac{{ - \pi }}{4}}^{\dfrac{\pi }{4}} {\log (\sin x + \cos x)dx} \] ----------(1)
Let the function\[f(x)\] is continuous in interval [-a,a], then
\[\int\limits_b^a {f(x)dx = \int\limits_o^a {[f(x) + f( - x)]dx} } \]
\[{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {\log (\sin (x) + \cos (x)) + \log (\sin ( - x) + \cos ( - x))} \right]dx} \]
Expanding the bracket on RHS, since \[\cos ( - x) = \cos x\]but, \[\sin ( - x) = - \sin x\]
\[{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {\log (\sin x + \cos x) + \log (\cos x - \sin x)} \right]dx} \]
Accordingly, we get the logarithmic formula is \[(\log a + \log b = \log ab)\]
\[{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {\log (\sin x + \cos x)(\cos x - \sin x)} \right]dx} \]
We can write this as follows
\[{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\log ({{\cos }^2}x - {{\sin }^2}x)dx} \]
\[{\rm I} = \int\limits_0^{\dfrac{\pi }{4}} {\log (\cos 2x)dx} \] --------(2)
Now, let us consider \[2x = t\]\[ \Rightarrow dx = \dfrac{{dt}}{2}\]
When \[x = 0\]then \[t = 0\]
When \[x = \dfrac{\pi }{4}\] then \[t = 2\left( {\dfrac{\pi }{4}} \right) \Rightarrow t = \dfrac{\pi }{2}\]
Now, we can substitute all the values in the equation (2), then
\[ \Rightarrow {\rm I} = \int\limits_0^t {\log (\cos t)dx} \]
\[ \Rightarrow {\rm I} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\cos t)\left( {\dfrac{{dt}}{2}} \right)} \]
\[ \Rightarrow {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\cos t)dt} \] --------- (3)
By symmetry we have the\[\log (\sin x)dx = {\rm I} = \log (\cos x)dx\] on the interval of \[\left[ {0,\dfrac{\pi }{2}} \right]\]. So this is true for any even or odd function on this interval. \[\int\limits_0^{\dfrac{\pi }{2}} {\log (\cos x)dx = {\rm I}} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx} \], as is an exercise from Demidovich problem in analysis. then
\[ \Rightarrow {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t)dt} \] --------- (4)
Here, adding the equation (3) and (4), we can get
\[ \Rightarrow {\rm I} + {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t + \cos t)dt} \]
since, \[(\log (a + b) = \log ab)\]
\[ \Rightarrow 2{\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t\cos t)dt} \]
\[ \Rightarrow 2{\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log \dfrac{{\sin 2t}}{2}dt} \]
Now, we can substitute back ‘t’ value, we can get
\[ \Rightarrow 2{\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {(\log (\sin 2x) - \log 2)dx} \]
From the equation (4) \[ \Rightarrow {\rm I} = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{2}} {\log (\sin t)dt} \] where, \[t = 2x\], we can get
\[ \Rightarrow 2{\rm I} = {\rm I} - \left( {\dfrac{1}{2}} \right)\dfrac{\pi }{2}\log 2\]
By subtracting ‘\[{\rm I}\]’ on both sides of the equation, now
\[
\Rightarrow 2{\rm I} - {\rm I} = - \dfrac{\pi }{4}\log 2 \\
\Rightarrow {\rm I} = - \dfrac{\pi }{4}\log 2 \\
\]
Therefore, \[{\rm I} = - \dfrac{\pi }{4}\log {e^2}\]
Hence, Integrate\[\log (\sin x + \cos x)dx\]from\[\dfrac{{ - \pi}}{4}\]to\[\dfrac{{\pi}}{4}\] is \[{\rm I} = - \dfrac{\pi }{4}\log {e^2}\]
Note: we note that an exercise from Demidovich problem in analysis we have to remind is\[\int\limits_0^{\dfrac{\pi }{2}} {\log (\cos x)dx = {\rm I}} = \int\limits_0^{\dfrac{\pi }{2}} {\log (\sin x)dx} \].
In integral, there are two types of integrals in maths are definite integral and Indefinite integral
Definite Integral: An integral that contains the upper and lower limits then it is a definite integral. On a real line, x is restricted to lie. Riemann Integral is the other name of the Definite Integral.A definite Integral is represented as: \[\int\limits_a^b {f(x)dx} \]
Indefinite Integral : Indefinite integrals are defined without upper and lower limits. It is represented as: \[\smallint f(x)dx = F(x) + C\]. Where C is any constant and the function \[f\left( x \right)\]is called the integrand.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

