
Integrate : $\int{x{{\cot }^{-1}}(x)dx}$
Answer
521.4k+ views
Hint: Apply Integration By Parts i.e. $\int{f(x)g(x)dx=f(x)\int{g(x)dx}-\int{\{\dfrac{d(f(x))}{dx}*[\int{g(x)dx]\}dx}}}$ where $f(x)$ and $g(x)$ are functions of $x$
Complete step by step answer:
Geometrical meaning of integration is area under the curve when it is drawn in $X-Y$ plane i.e.
$\int\limits_{a}^{b}{Q(x)}dx$ is equal to area under the curve which is enclosed in $x=a$ and $x=b$
Likewise there is another term i.e. Differentiation which is opposite of integration.
Geometrical meaning of Differentiation is that it provides the slope drawn on $y=f(x)$ at point $x=a$ i.e.
$\dfrac{d\{f(x)\}}{dx}$ value at$x=a$ is a slope of tangent drawn at point$\{a,f(a)\}$.
When we have to find the integration of multiplication of two functions we integration by parts i.e. $\int{f(x)g(x)dx=f(x)\int{g(x)dx}-\int{\{\dfrac{d(f(x))}{dx}*[\int{g(x)dx]\}dx}}}$
Firstly before applying integration by parts we first define ${{1}^{st}}$ function and ${{2}^{nd}}$ function according to ILATE rule the function comes first in the word ILATE will be treated as ${{1}^{st}}$function and remaining function as ${{2}^{nd}}$
ILATE stands for I = Inverse Trigonometric function
L = Logarithm function
A = Algebraic function
T= Trigonometric function
E= Exponential function
Let us assume ${{1}^{st}}$ function be $f(x)$ and ${{2}^{nd}}$ function be $g(x)$ then,
\[\int{f(x)g(x)dx=\int{{{1}^{st}}*{{2}^{nd}}dx={{1}^{st}}\int{{{2}^{nd}}dx-\int{\{\dfrac{d({{1}^{st}})}{dx}*\int{({{2}^{nd}})dx}}}}}\}dx\]
We have $\int{x{{\cot }^{-1}}(x)dx}$ ,So first we ${{1}^{st}}$ and ${{2}^{nd}}$ function according to ILATE rule ${{\cot }^{-1}}(x)$ be the ${{1}^{st}}$ function and ${{2}^{nd}}$ function.
So by applying integration by parts we have,
$\int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)\int{xdx-\int{\{\dfrac{d({{\cot }^{-1}}(x)}{dx}*\int{xdx\}dx}}}}..................eq(1)$
$\int{xdx=\dfrac{{{x}^{2}}}{2}+c}......................eq(2)$
$\dfrac{d({{\cot }^{-1}}x)}{dx}=\dfrac{-1}{1+{{x}^{2}}}..............eq(3)$
Put eq(2) and eq(3) in eq(1) then we get,
\[\begin{align}
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}-\int{\{(}\dfrac{-1}{1+{{x}^{2}}})*\dfrac{{{x}^{2}}}{2}\}dx \\
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}..............eq(4) \\
\end{align}\]
For $\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}$ we have to add $\pm 1$ to the numerator, so that we can form partial fractions . Therefore we get,
\[\begin{align}
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{\dfrac{{{x}^{2}}+1-1}{1+{{x}^{2}}}}dx \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{(\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{1+{{x}^{2}}})}dx \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{(1-\dfrac{1}{1+{{x}^{2}}})dx} \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{1dx-\int{\dfrac{1}{1+{{x}^{2}}}dx}} \\
\end{align}\]
As we know \[\int{\dfrac{1}{1+{{x}^{2}}}dx={{\tan }^{-1}}(x)+c}\]
So we get \[\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\dfrac{{{x}}}{1}-{{\tan }^{-1}}(x)+c'\] put this result in eq(4)
Therefore ,final result will be
\[\begin{align}
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}+c \\
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}}}{2}-\dfrac{{{\tan }^{-1}}(x)}{2}+c'+c \\
\end{align}\]
Note: Integration to be learn by heart i.e. integration of $\sec x$ and $\cos ecx$
\[\begin{align}
& \int{\sec (x)dx=\ln (\sec x+\tan x)+c} \\
& \int{\cos ec(x)dx=\ln (\cos ecx-\cot x})+c \\
\end{align}\]
Complete step by step answer:
Geometrical meaning of integration is area under the curve when it is drawn in $X-Y$ plane i.e.
$\int\limits_{a}^{b}{Q(x)}dx$ is equal to area under the curve which is enclosed in $x=a$ and $x=b$
Likewise there is another term i.e. Differentiation which is opposite of integration.
Geometrical meaning of Differentiation is that it provides the slope drawn on $y=f(x)$ at point $x=a$ i.e.
$\dfrac{d\{f(x)\}}{dx}$ value at$x=a$ is a slope of tangent drawn at point$\{a,f(a)\}$.
When we have to find the integration of multiplication of two functions we integration by parts i.e. $\int{f(x)g(x)dx=f(x)\int{g(x)dx}-\int{\{\dfrac{d(f(x))}{dx}*[\int{g(x)dx]\}dx}}}$
Firstly before applying integration by parts we first define ${{1}^{st}}$ function and ${{2}^{nd}}$ function according to ILATE rule the function comes first in the word ILATE will be treated as ${{1}^{st}}$function and remaining function as ${{2}^{nd}}$
ILATE stands for I = Inverse Trigonometric function
L = Logarithm function
A = Algebraic function
T= Trigonometric function
E= Exponential function
Let us assume ${{1}^{st}}$ function be $f(x)$ and ${{2}^{nd}}$ function be $g(x)$ then,
\[\int{f(x)g(x)dx=\int{{{1}^{st}}*{{2}^{nd}}dx={{1}^{st}}\int{{{2}^{nd}}dx-\int{\{\dfrac{d({{1}^{st}})}{dx}*\int{({{2}^{nd}})dx}}}}}\}dx\]
We have $\int{x{{\cot }^{-1}}(x)dx}$ ,So first we ${{1}^{st}}$ and ${{2}^{nd}}$ function according to ILATE rule ${{\cot }^{-1}}(x)$ be the ${{1}^{st}}$ function and ${{2}^{nd}}$ function.
So by applying integration by parts we have,
$\int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)\int{xdx-\int{\{\dfrac{d({{\cot }^{-1}}(x)}{dx}*\int{xdx\}dx}}}}..................eq(1)$
$\int{xdx=\dfrac{{{x}^{2}}}{2}+c}......................eq(2)$
$\dfrac{d({{\cot }^{-1}}x)}{dx}=\dfrac{-1}{1+{{x}^{2}}}..............eq(3)$
Put eq(2) and eq(3) in eq(1) then we get,
\[\begin{align}
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}-\int{\{(}\dfrac{-1}{1+{{x}^{2}}})*\dfrac{{{x}^{2}}}{2}\}dx \\
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}..............eq(4) \\
\end{align}\]
For $\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}$ we have to add $\pm 1$ to the numerator, so that we can form partial fractions . Therefore we get,
\[\begin{align}
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{\dfrac{{{x}^{2}}+1-1}{1+{{x}^{2}}}}dx \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{(\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{1+{{x}^{2}}})}dx \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{(1-\dfrac{1}{1+{{x}^{2}}})dx} \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{1dx-\int{\dfrac{1}{1+{{x}^{2}}}dx}} \\
\end{align}\]
As we know \[\int{\dfrac{1}{1+{{x}^{2}}}dx={{\tan }^{-1}}(x)+c}\]
So we get \[\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\dfrac{{{x}}}{1}-{{\tan }^{-1}}(x)+c'\] put this result in eq(4)
Therefore ,final result will be
\[\begin{align}
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}+c \\
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}}}{2}-\dfrac{{{\tan }^{-1}}(x)}{2}+c'+c \\
\end{align}\]
Note: Integration to be learn by heart i.e. integration of $\sec x$ and $\cos ecx$
\[\begin{align}
& \int{\sec (x)dx=\ln (\sec x+\tan x)+c} \\
& \int{\cos ec(x)dx=\ln (\cos ecx-\cot x})+c \\
\end{align}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

