
Integrate : $\int{x{{\cot }^{-1}}(x)dx}$
Answer
507.3k+ views
Hint: Apply Integration By Parts i.e. $\int{f(x)g(x)dx=f(x)\int{g(x)dx}-\int{\{\dfrac{d(f(x))}{dx}*[\int{g(x)dx]\}dx}}}$ where $f(x)$ and $g(x)$ are functions of $x$
Complete step by step answer:
Geometrical meaning of integration is area under the curve when it is drawn in $X-Y$ plane i.e.
$\int\limits_{a}^{b}{Q(x)}dx$ is equal to area under the curve which is enclosed in $x=a$ and $x=b$
Likewise there is another term i.e. Differentiation which is opposite of integration.
Geometrical meaning of Differentiation is that it provides the slope drawn on $y=f(x)$ at point $x=a$ i.e.
$\dfrac{d\{f(x)\}}{dx}$ value at$x=a$ is a slope of tangent drawn at point$\{a,f(a)\}$.
When we have to find the integration of multiplication of two functions we integration by parts i.e. $\int{f(x)g(x)dx=f(x)\int{g(x)dx}-\int{\{\dfrac{d(f(x))}{dx}*[\int{g(x)dx]\}dx}}}$
Firstly before applying integration by parts we first define ${{1}^{st}}$ function and ${{2}^{nd}}$ function according to ILATE rule the function comes first in the word ILATE will be treated as ${{1}^{st}}$function and remaining function as ${{2}^{nd}}$
ILATE stands for I = Inverse Trigonometric function
L = Logarithm function
A = Algebraic function
T= Trigonometric function
E= Exponential function
Let us assume ${{1}^{st}}$ function be $f(x)$ and ${{2}^{nd}}$ function be $g(x)$ then,
\[\int{f(x)g(x)dx=\int{{{1}^{st}}*{{2}^{nd}}dx={{1}^{st}}\int{{{2}^{nd}}dx-\int{\{\dfrac{d({{1}^{st}})}{dx}*\int{({{2}^{nd}})dx}}}}}\}dx\]
We have $\int{x{{\cot }^{-1}}(x)dx}$ ,So first we ${{1}^{st}}$ and ${{2}^{nd}}$ function according to ILATE rule ${{\cot }^{-1}}(x)$ be the ${{1}^{st}}$ function and ${{2}^{nd}}$ function.
So by applying integration by parts we have,
$\int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)\int{xdx-\int{\{\dfrac{d({{\cot }^{-1}}(x)}{dx}*\int{xdx\}dx}}}}..................eq(1)$
$\int{xdx=\dfrac{{{x}^{2}}}{2}+c}......................eq(2)$
$\dfrac{d({{\cot }^{-1}}x)}{dx}=\dfrac{-1}{1+{{x}^{2}}}..............eq(3)$
Put eq(2) and eq(3) in eq(1) then we get,
\[\begin{align}
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}-\int{\{(}\dfrac{-1}{1+{{x}^{2}}})*\dfrac{{{x}^{2}}}{2}\}dx \\
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}..............eq(4) \\
\end{align}\]
For $\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}$ we have to add $\pm 1$ to the numerator, so that we can form partial fractions . Therefore we get,
\[\begin{align}
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{\dfrac{{{x}^{2}}+1-1}{1+{{x}^{2}}}}dx \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{(\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{1+{{x}^{2}}})}dx \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{(1-\dfrac{1}{1+{{x}^{2}}})dx} \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{1dx-\int{\dfrac{1}{1+{{x}^{2}}}dx}} \\
\end{align}\]
As we know \[\int{\dfrac{1}{1+{{x}^{2}}}dx={{\tan }^{-1}}(x)+c}\]
So we get \[\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\dfrac{{{x}}}{1}-{{\tan }^{-1}}(x)+c'\] put this result in eq(4)
Therefore ,final result will be
\[\begin{align}
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}+c \\
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}}}{2}-\dfrac{{{\tan }^{-1}}(x)}{2}+c'+c \\
\end{align}\]
Note: Integration to be learn by heart i.e. integration of $\sec x$ and $\cos ecx$
\[\begin{align}
& \int{\sec (x)dx=\ln (\sec x+\tan x)+c} \\
& \int{\cos ec(x)dx=\ln (\cos ecx-\cot x})+c \\
\end{align}\]
Complete step by step answer:
Geometrical meaning of integration is area under the curve when it is drawn in $X-Y$ plane i.e.
$\int\limits_{a}^{b}{Q(x)}dx$ is equal to area under the curve which is enclosed in $x=a$ and $x=b$
Likewise there is another term i.e. Differentiation which is opposite of integration.
Geometrical meaning of Differentiation is that it provides the slope drawn on $y=f(x)$ at point $x=a$ i.e.
$\dfrac{d\{f(x)\}}{dx}$ value at$x=a$ is a slope of tangent drawn at point$\{a,f(a)\}$.
When we have to find the integration of multiplication of two functions we integration by parts i.e. $\int{f(x)g(x)dx=f(x)\int{g(x)dx}-\int{\{\dfrac{d(f(x))}{dx}*[\int{g(x)dx]\}dx}}}$
Firstly before applying integration by parts we first define ${{1}^{st}}$ function and ${{2}^{nd}}$ function according to ILATE rule the function comes first in the word ILATE will be treated as ${{1}^{st}}$function and remaining function as ${{2}^{nd}}$
ILATE stands for I = Inverse Trigonometric function
L = Logarithm function
A = Algebraic function
T= Trigonometric function
E= Exponential function
Let us assume ${{1}^{st}}$ function be $f(x)$ and ${{2}^{nd}}$ function be $g(x)$ then,
\[\int{f(x)g(x)dx=\int{{{1}^{st}}*{{2}^{nd}}dx={{1}^{st}}\int{{{2}^{nd}}dx-\int{\{\dfrac{d({{1}^{st}})}{dx}*\int{({{2}^{nd}})dx}}}}}\}dx\]
We have $\int{x{{\cot }^{-1}}(x)dx}$ ,So first we ${{1}^{st}}$ and ${{2}^{nd}}$ function according to ILATE rule ${{\cot }^{-1}}(x)$ be the ${{1}^{st}}$ function and ${{2}^{nd}}$ function.
So by applying integration by parts we have,
$\int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)\int{xdx-\int{\{\dfrac{d({{\cot }^{-1}}(x)}{dx}*\int{xdx\}dx}}}}..................eq(1)$
$\int{xdx=\dfrac{{{x}^{2}}}{2}+c}......................eq(2)$
$\dfrac{d({{\cot }^{-1}}x)}{dx}=\dfrac{-1}{1+{{x}^{2}}}..............eq(3)$
Put eq(2) and eq(3) in eq(1) then we get,
\[\begin{align}
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}-\int{\{(}\dfrac{-1}{1+{{x}^{2}}})*\dfrac{{{x}^{2}}}{2}\}dx \\
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}..............eq(4) \\
\end{align}\]
For $\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}$ we have to add $\pm 1$ to the numerator, so that we can form partial fractions . Therefore we get,
\[\begin{align}
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{\dfrac{{{x}^{2}}+1-1}{1+{{x}^{2}}}}dx \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{(\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{1+{{x}^{2}}})}dx \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{(1-\dfrac{1}{1+{{x}^{2}}})dx} \\
& \int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\int{1dx-\int{\dfrac{1}{1+{{x}^{2}}}dx}} \\
\end{align}\]
As we know \[\int{\dfrac{1}{1+{{x}^{2}}}dx={{\tan }^{-1}}(x)+c}\]
So we get \[\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx=}\dfrac{{{x}}}{1}-{{\tan }^{-1}}(x)+c'\] put this result in eq(4)
Therefore ,final result will be
\[\begin{align}
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{1}{2}\int{(\dfrac{{{x}^{2}}}{1+{{x}^{2}}})dx}+c \\
& \int{x*{{\cot }^{-1}}(x)dx={{\cot }^{-1}}(x)}*\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}}}{2}-\dfrac{{{\tan }^{-1}}(x)}{2}+c'+c \\
\end{align}\]
Note: Integration to be learn by heart i.e. integration of $\sec x$ and $\cos ecx$
\[\begin{align}
& \int{\sec (x)dx=\ln (\sec x+\tan x)+c} \\
& \int{\cos ec(x)dx=\ln (\cos ecx-\cot x})+c \\
\end{align}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

