
How do you integrate $\int{\sqrt{4-9{{x}^{2}}}}$ using trigonometric substitutions?
Answer
563.1k+ views
Hint: In the problem they have asked to use the trigonometric substitutions, by looking the given equation we will use the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. So, we will take the substitution $9{{x}^{2}}=4{{\sin }^{2}}y$. From this equation we will calculate the value of $x$ and $dx$ in terms of $y$ and $dy$, by using the algebraic formulas and differentiation formulas. Now we will convert the given equation in terms of $y$ and $dy$ by substituting the value of $x$ and $dx$ in the given equation. Now we will simplify the obtained equation by applying the trigonometric formula $\cos 2\theta =2{{\cos }^{2}}\theta -1$. After integrating the above value, we will get the result in terms of $y$, but we need to calculate the result in terms of $x$, so we will calculate the value of $y$ from our assumption i.e., $9{{x}^{2}}=4{{\sin }^{2}}y$ and substitute it in the obtained equation to get the result.
Complete step by step answer:
Given that, $\int{\sqrt{4-9{{x}^{2}}}}$.
Let us take the substitution $9{{x}^{2}}=4{{\sin }^{2}}y$.
From the above substitution the value of $x$ can be obtained by taking square root on both sides of the equation, then
$\begin{align}
& \sqrt{9{{x}^{2}}}=\sqrt{4{{\sin }^{2}}y} \\
& \Rightarrow 3x=2\sin y \\
& \Rightarrow x=\dfrac{2}{3}\sin y....\left( \text{i} \right) \\
\end{align}$
Differentiating the above value, then we will get
$dx=\dfrac{2}{3}\cos y.dy$
Now substituting the all values, we have in the given equation, then we will get
$\int{\sqrt{4-9{{x}^{2}}}}dx=\int{\sqrt{4-4{{\sin }^{2}}y}}\dfrac{2}{3}\cos ydy$
Taking $4$ common in the square root function, then we will get
$\Rightarrow \int{\sqrt{4-9{{x}^{2}}}}dx=\int{\dfrac{2}{3}\sqrt{4\left( 1-{{\sin }^{2}}y \right)}}\cos ydy$
From the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we have the value $1-{{\sin }^{2}}y={{\cos }^{2}}y$, then the above equation modified as
$\begin{align}
& \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\int{\dfrac{2}{3}\times 2\sqrt{{{\cos }^{2}}y}\cos y}dy \\
& \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\int{\dfrac{4}{3}{{\cos }^{2}}y}dy \\
\end{align}$
From the trigonometric equation $\cos 2\theta =2{{\cos }^{2}}\theta -1$, then value of ${{\cos }^{2}}y=\dfrac{1+\cos 2y}{2}$, then the above equation is modified as
$\begin{align}
& \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{4}{3}\int{\dfrac{1+\cos 2y}{2}dy} \\
& \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{4}{3}\times \dfrac{1}{2}\left[ \int{1dy}+\int{\cos 2ydy} \right] \\
\end{align}$
We have the integration formulas $\int{1.dy}=y+C$, $\int{\cos 2y}dy=\dfrac{1}{2}\sin 2y+C$, then we will get
$\begin{align}
& \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{2}{3}\left[ y+\dfrac{1}{2}\sin 2y \right]+C \\
& \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{2}{3}y+\dfrac{1}{3}\sin 2y+C \\
\end{align}$
We have the trigonometric formula $\sin 2\theta =2\sin \theta .\cos \theta $, then we will have
$\Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{2}{3}y+\dfrac{1}{3}\times 2\sin y\cos y+C$
From equation $\left( \text{i} \right)$, we have
$\begin{align}
& x=\dfrac{2}{3}\sin y \\
& \Rightarrow \sin y=\dfrac{3}{2}x...\left( \text{ii} \right) \\
& \Rightarrow y={{\sin }^{-1}}\left( \dfrac{3}{2}x \right)...\left( \text{iii} \right) \\
\end{align}$
From trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, the value of $\cos y$ will be
$\begin{align}
& {{\cos }^{2}}y=1-{{\sin }^{2}}y \\
& \Rightarrow \cos y=\sqrt{1-{{\left( \dfrac{3}{2}x \right)}^{2}}}....\left( \text{iv} \right) \\
\end{align}$
From equations $\left( \text{ii} \right)$, $\left( \text{iii} \right)$, $\left( \text{iv} \right)$, the value of $\int{\sqrt{4-9{{x}^{2}}}}$ is
$\begin{align}
& \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\dfrac{2}{3}{{\sin }^{-1}}\left( \dfrac{3}{2}x \right)+\dfrac{2}{3}\left( \dfrac{3}{2}x \right)\left( \sqrt{1-\dfrac{9}{4}{{x}^{2}}} \right)+C \\
& \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\dfrac{2}{3}{{\sin }^{-1}}\left( \dfrac{3}{2}x \right)+\dfrac{1}{2}x\sqrt{4-9{{x}^{2}}}+C \\
\end{align}$
Hence the value of $\int{\sqrt{4-9{{x}^{2}}}dx}$ is $\dfrac{x}{2}\sqrt{4-9{{x}^{2}}}+\dfrac{2}{3}{{\sin }^{-1}}\left( \dfrac{3}{2}x \right)+C$
Note: In the problem they have specially mentioned to use the trigonometric substitution, so we have followed the above procedure otherwise we have direct formula for this problem i.e., $\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+C$. We will convert the given equation in the above form and use this formula to get the result.
Complete step by step answer:
Given that, $\int{\sqrt{4-9{{x}^{2}}}}$.
Let us take the substitution $9{{x}^{2}}=4{{\sin }^{2}}y$.
From the above substitution the value of $x$ can be obtained by taking square root on both sides of the equation, then
$\begin{align}
& \sqrt{9{{x}^{2}}}=\sqrt{4{{\sin }^{2}}y} \\
& \Rightarrow 3x=2\sin y \\
& \Rightarrow x=\dfrac{2}{3}\sin y....\left( \text{i} \right) \\
\end{align}$
Differentiating the above value, then we will get
$dx=\dfrac{2}{3}\cos y.dy$
Now substituting the all values, we have in the given equation, then we will get
$\int{\sqrt{4-9{{x}^{2}}}}dx=\int{\sqrt{4-4{{\sin }^{2}}y}}\dfrac{2}{3}\cos ydy$
Taking $4$ common in the square root function, then we will get
$\Rightarrow \int{\sqrt{4-9{{x}^{2}}}}dx=\int{\dfrac{2}{3}\sqrt{4\left( 1-{{\sin }^{2}}y \right)}}\cos ydy$
From the trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we have the value $1-{{\sin }^{2}}y={{\cos }^{2}}y$, then the above equation modified as
$\begin{align}
& \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\int{\dfrac{2}{3}\times 2\sqrt{{{\cos }^{2}}y}\cos y}dy \\
& \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\int{\dfrac{4}{3}{{\cos }^{2}}y}dy \\
\end{align}$
From the trigonometric equation $\cos 2\theta =2{{\cos }^{2}}\theta -1$, then value of ${{\cos }^{2}}y=\dfrac{1+\cos 2y}{2}$, then the above equation is modified as
$\begin{align}
& \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{4}{3}\int{\dfrac{1+\cos 2y}{2}dy} \\
& \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{4}{3}\times \dfrac{1}{2}\left[ \int{1dy}+\int{\cos 2ydy} \right] \\
\end{align}$
We have the integration formulas $\int{1.dy}=y+C$, $\int{\cos 2y}dy=\dfrac{1}{2}\sin 2y+C$, then we will get
$\begin{align}
& \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{2}{3}\left[ y+\dfrac{1}{2}\sin 2y \right]+C \\
& \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{2}{3}y+\dfrac{1}{3}\sin 2y+C \\
\end{align}$
We have the trigonometric formula $\sin 2\theta =2\sin \theta .\cos \theta $, then we will have
$\Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{2}{3}y+\dfrac{1}{3}\times 2\sin y\cos y+C$
From equation $\left( \text{i} \right)$, we have
$\begin{align}
& x=\dfrac{2}{3}\sin y \\
& \Rightarrow \sin y=\dfrac{3}{2}x...\left( \text{ii} \right) \\
& \Rightarrow y={{\sin }^{-1}}\left( \dfrac{3}{2}x \right)...\left( \text{iii} \right) \\
\end{align}$
From trigonometric identity ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, the value of $\cos y$ will be
$\begin{align}
& {{\cos }^{2}}y=1-{{\sin }^{2}}y \\
& \Rightarrow \cos y=\sqrt{1-{{\left( \dfrac{3}{2}x \right)}^{2}}}....\left( \text{iv} \right) \\
\end{align}$
From equations $\left( \text{ii} \right)$, $\left( \text{iii} \right)$, $\left( \text{iv} \right)$, the value of $\int{\sqrt{4-9{{x}^{2}}}}$ is
$\begin{align}
& \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\dfrac{2}{3}{{\sin }^{-1}}\left( \dfrac{3}{2}x \right)+\dfrac{2}{3}\left( \dfrac{3}{2}x \right)\left( \sqrt{1-\dfrac{9}{4}{{x}^{2}}} \right)+C \\
& \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\dfrac{2}{3}{{\sin }^{-1}}\left( \dfrac{3}{2}x \right)+\dfrac{1}{2}x\sqrt{4-9{{x}^{2}}}+C \\
\end{align}$
Hence the value of $\int{\sqrt{4-9{{x}^{2}}}dx}$ is $\dfrac{x}{2}\sqrt{4-9{{x}^{2}}}+\dfrac{2}{3}{{\sin }^{-1}}\left( \dfrac{3}{2}x \right)+C$
Note: In the problem they have specially mentioned to use the trigonometric substitution, so we have followed the above procedure otherwise we have direct formula for this problem i.e., $\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+C$. We will convert the given equation in the above form and use this formula to get the result.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

