
How do you integrate $\int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} $, $m,n \in Z$?
Answer
546k+ views
Hint: In this question we have to find the integral value of the given function, we will find by using the trigonometric identity, $\sin \left( {a + b} \right) + \sin \left( {a - b} \right) = 2\sin a\cos b$, then we will distribute the integration and by using the integration formula $\int {\sin x} dx = - \cos x$, then we will apply the intervals , then we will get the required result.
Complete step by step solution:
Given function is $\int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} $,
We know that $\sin \left( {a + b} \right) + \sin \left( {a - b} \right) = 2\sin a\cos b$, using the formula we get,
$ \Rightarrow \sin \left( {mx} \right)\cos \left( {nx} \right) = \dfrac{1}{2}\left[ {\sin \left( {mx + nx} \right) + \sin \left( {mx - nx} \right)} \right]$,
Now substituting the value, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = \int\limits_0^{2\pi } {\dfrac{1}{2}\left[ {\sin \left( {mx + nx} \right) + \sin \left( {mx - nx} \right)} \right]dx} $,
Now taking out the constant we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = \dfrac{1}{2}\int\limits_0^{2\pi } {\left[ {\sin \left( {m + n} \right)x + \sin \left( {m - n} \right)x} \right]dx} $,
Now distribute the integration to all terms, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = \dfrac{1}{2}\int\limits_0^{2\pi } {\sin \left( {m + n} \right)x} dx + \dfrac{1}{2}\int\limits_0^{2\pi } {\sin \left( {m - n} \right)x} dx$,
Now applying the integration we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m + n} \right)x}}{{m + n}}} \right]_{_0}^{2\pi } - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m - n} \right)x}}{{m - n}}} \right]_{_0}^{2\pi } + C$,
Now applying intervals we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m + n} \right)\left( {2\pi } \right)}}{{m + n}} - \dfrac{{\cos \left( {m + n} \right)0}}{{m + n}}} \right] - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m - n} \right)\left( {2\pi } \right)}}{{m - n}} - \dfrac{{\cos \left( {m - n} \right)0}}{{m - n}}} \right] + C$Now simplifying we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{m + n}} - \dfrac{{\cos 0}}{{m + n}}} \right] - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{m - n}} - \dfrac{{\cos 0}}{{m - n}}} \right] + C$
Now we know that $\cos 0 = 1$, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{m + n}} - \dfrac{1}{{m + n}}} \right] - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{m - n}} - \dfrac{1}{{m - n}}} \right] + C$
Now distributing the constant, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)}}} \right] + \dfrac{1}{{2\left( {m + n} \right)}} - \left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m - n} \right)}}} \right] + \dfrac{1}{{2\left( {m - n} \right)}}C$
Now simplifying we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)}}} \right] + - \left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m - n} \right)}}} \right] + \dfrac{1}{{2\left( {m + n} \right)}} + \dfrac{1}{{2\left( {m - n} \right)}}C$
Now taking L.C.M, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)\left( {m - n} \right)}} + \dfrac{{\left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)\left( {m - n} \right)}}} \right]$$ + \dfrac{{2\left( {m - n} \right) + 2\left( {m + n} \right)}}{{4\left( {m + n} \right)\left( {m - n} \right)}} + C$,
Now simplifying we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$$ + \dfrac{{2m - 2n + 2m + 2n}}{{4\left( {{m^2} - {n^2}} \right)}} + C$,
Now simplifying we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$
$ + \dfrac{{4m}}{{4\left( {{m^2} - {n^2}} \right)}} + C$,
Now further simplification we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$$ + \dfrac{m}{{\left( {{m^2} - {n^2}} \right)}} + C$,
Now again simplifying the expression we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$$ + \dfrac{{2m}}{{2\left( {{m^2} - {n^2}} \right)}} + C$,
Now by adding as the denominators are equal, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + 2m}}{{2\left( {{m^2} - {n^2}} \right)}}} \right] + C$
So, the integral value is $ - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + 2m}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$.
$\therefore $ The integral value of the given function $\int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} $ will be equal to
$ - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + 2m}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$.
Note: An indefinite is an integral that does not contain the upper and lower limit. Indefinite integral is also known as anti-derivative or Prime integral. Indefinite integral of a function f is generally a differentiable function F whose derivative is equal to the original function f. It is represented as,
$\int {f\left( x \right)dx} = F\left( x \right) + C$,
Some of the important formulas that we use while solving integration problems are given below:
$\int {dx = x + c} $,
$\int {adx = ax + c} $,
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c$,
$\int {\dfrac{1}{x}dx} = \ln x + c$,
$\int {{e^x}dx = {e^x} + c} $,
$\int {{a^x}dx = \dfrac{{{a^x}}}{{\ln a}} + c} $,
$\int {\sin xdx = - \cos x + c} $,
$\int {\cos xdx = \sin x + c} $,
$\int {{{\sec }^2}xdx = \tan x + c} $,
$\int {{{\csc }^2}xdx = - \cot x + C} $,
$\int {\sec x\tan xdx = \sec x + C} $,
$\int {\csc x\cot xdx = - \csc x + C} $,
$\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx = {{\sin }^{ - 1}}x + c} $,
$\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + c} $.
Complete step by step solution:
Given function is $\int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} $,
We know that $\sin \left( {a + b} \right) + \sin \left( {a - b} \right) = 2\sin a\cos b$, using the formula we get,
$ \Rightarrow \sin \left( {mx} \right)\cos \left( {nx} \right) = \dfrac{1}{2}\left[ {\sin \left( {mx + nx} \right) + \sin \left( {mx - nx} \right)} \right]$,
Now substituting the value, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = \int\limits_0^{2\pi } {\dfrac{1}{2}\left[ {\sin \left( {mx + nx} \right) + \sin \left( {mx - nx} \right)} \right]dx} $,
Now taking out the constant we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = \dfrac{1}{2}\int\limits_0^{2\pi } {\left[ {\sin \left( {m + n} \right)x + \sin \left( {m - n} \right)x} \right]dx} $,
Now distribute the integration to all terms, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = \dfrac{1}{2}\int\limits_0^{2\pi } {\sin \left( {m + n} \right)x} dx + \dfrac{1}{2}\int\limits_0^{2\pi } {\sin \left( {m - n} \right)x} dx$,
Now applying the integration we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m + n} \right)x}}{{m + n}}} \right]_{_0}^{2\pi } - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m - n} \right)x}}{{m - n}}} \right]_{_0}^{2\pi } + C$,
Now applying intervals we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m + n} \right)\left( {2\pi } \right)}}{{m + n}} - \dfrac{{\cos \left( {m + n} \right)0}}{{m + n}}} \right] - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m - n} \right)\left( {2\pi } \right)}}{{m - n}} - \dfrac{{\cos \left( {m - n} \right)0}}{{m - n}}} \right] + C$Now simplifying we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{m + n}} - \dfrac{{\cos 0}}{{m + n}}} \right] - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{m - n}} - \dfrac{{\cos 0}}{{m - n}}} \right] + C$
Now we know that $\cos 0 = 1$, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{m + n}} - \dfrac{1}{{m + n}}} \right] - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{m - n}} - \dfrac{1}{{m - n}}} \right] + C$
Now distributing the constant, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)}}} \right] + \dfrac{1}{{2\left( {m + n} \right)}} - \left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m - n} \right)}}} \right] + \dfrac{1}{{2\left( {m - n} \right)}}C$
Now simplifying we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)}}} \right] + - \left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m - n} \right)}}} \right] + \dfrac{1}{{2\left( {m + n} \right)}} + \dfrac{1}{{2\left( {m - n} \right)}}C$
Now taking L.C.M, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)\left( {m - n} \right)}} + \dfrac{{\left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)\left( {m - n} \right)}}} \right]$$ + \dfrac{{2\left( {m - n} \right) + 2\left( {m + n} \right)}}{{4\left( {m + n} \right)\left( {m - n} \right)}} + C$,
Now simplifying we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$$ + \dfrac{{2m - 2n + 2m + 2n}}{{4\left( {{m^2} - {n^2}} \right)}} + C$,
Now simplifying we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$
$ + \dfrac{{4m}}{{4\left( {{m^2} - {n^2}} \right)}} + C$,
Now further simplification we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$$ + \dfrac{m}{{\left( {{m^2} - {n^2}} \right)}} + C$,
Now again simplifying the expression we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$$ + \dfrac{{2m}}{{2\left( {{m^2} - {n^2}} \right)}} + C$,
Now by adding as the denominators are equal, we get,
$ \Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + 2m}}{{2\left( {{m^2} - {n^2}} \right)}}} \right] + C$
So, the integral value is $ - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + 2m}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$.
$\therefore $ The integral value of the given function $\int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} $ will be equal to
$ - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + 2m}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]$.
Note: An indefinite is an integral that does not contain the upper and lower limit. Indefinite integral is also known as anti-derivative or Prime integral. Indefinite integral of a function f is generally a differentiable function F whose derivative is equal to the original function f. It is represented as,
$\int {f\left( x \right)dx} = F\left( x \right) + C$,
Some of the important formulas that we use while solving integration problems are given below:
$\int {dx = x + c} $,
$\int {adx = ax + c} $,
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c$,
$\int {\dfrac{1}{x}dx} = \ln x + c$,
$\int {{e^x}dx = {e^x} + c} $,
$\int {{a^x}dx = \dfrac{{{a^x}}}{{\ln a}} + c} $,
$\int {\sin xdx = - \cos x + c} $,
$\int {\cos xdx = \sin x + c} $,
$\int {{{\sec }^2}xdx = \tan x + c} $,
$\int {{{\csc }^2}xdx = - \cot x + C} $,
$\int {\sec x\tan xdx = \sec x + C} $,
$\int {\csc x\cot xdx = - \csc x + C} $,
$\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx = {{\sin }^{ - 1}}x + c} $,
$\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + c} $.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

