
How do you integrate $\int{\dfrac{1}{{{x}^{3}}-1}}$ using partial fractions?
Answer
528.9k+ views
Hint: Firstly use the partial fraction method to express the integrand in two separate integrands whose denominators are the individual factors of the given integrand. And then integrate them separately.
Partial fraction of the rational fraction form $\dfrac{p(x)+q}{(x\pm a)(x\pm b)}$ is given as $\dfrac{A}{(x\pm a)}+\dfrac{B}{(x\pm b)}$
Find the value of A and B by comparing it with original integrand.
Complete step by step solution:
In order to integrate $\int{\dfrac{1}{{{x}^{3}}-1}}$ using partial fractions, we will first separate or express the integrand as sum of two integrands as follows;
We can rewrite ${{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)$using the identity.
$\dfrac{1}{{{x}^{3}}-1}=\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{A}{(x-1)}+\dfrac{Bx+C}{\left( {{x}^{2}}+x+1 \right)}$
Now, we will find the value of A,B and C by comparing both integrands as follows
\[\Rightarrow 1=A\left( {{x}^{2}}+x+1 \right)+\left( Bx+C \right)\left( x-1 \right)\]
Equating similar terms (constants and coefficients of the variable) we will get,
$\Rightarrow A+B=0\ \ then\ \Rightarrow A=-B$------ (1)
$\Rightarrow A-C=1\ \ then\ \Rightarrow C=A-1$------ (2)
$\Rightarrow A-B+C=0$------ (3)
Substituting equation (1) and equation (2) into equation (3),
$\Rightarrow A+A+A-1=0$
$\Rightarrow A=\dfrac{1}{3}$
$\Rightarrow B=-\dfrac{1}{3}$
$\Rightarrow C=\dfrac{1}{3}-1=\dfrac{1-3}{3}=-\dfrac{2}{3}$
Now we have the respective values of A, B and C, so putting them in the above considered integrands and then integrating them, we will get
$\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{1}{3(x-1)}+\dfrac{-\dfrac{1}{3}x-\dfrac{2}{3}}{\left( {{x}^{2}}+x+1 \right)}$
Simplifying the above expression, we get
$\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{1}{3(x-1)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}$
Integrating the resultant expression, we obtain
$\Rightarrow \int{\dfrac{1}{3(x-1)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}}dx$
Distributing the integration above subtraction, we will get
$\Rightarrow \int{\dfrac{1}{3(x-1)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}}dx=\int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}$
Now, we know that the integration of $\dfrac{1}{(x\pm a)}$ equals $\ln \left| x\pm a \right|+c$, so integrating the above functions using this formula, we will get
$\Rightarrow \int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}=\dfrac{1}{3}\ln \left| x-1 \right|+{{C}_{1}}-\dfrac{1}{3}\int{\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)}dx}$
We can rewrite this expression $\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)}$ as \[\dfrac{1}{2}\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)\]
Thus, substituting this value, we obtain
$\Rightarrow \int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}=\dfrac{1}{3}\ln \left| x-1 \right|+{{C}_{1}}-\dfrac{1}{3}\int{\dfrac{1}{2}\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)dx}$
Simplifying the above expression, we get
$\Rightarrow \int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}=\dfrac{1}{3}\ln \left| x-1 \right|+{{C}_{1}}-\dfrac{1}{6}\int{\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)dx}$
Now solving,
$\Rightarrow -\dfrac{1}{6}\int{\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)dx}=-\dfrac{1}{6}\ln \left| {{x}^{2}}+x+1 \right|+{{C}_{2}}-\dfrac{1}{6}\int{\dfrac{3}{{{x}^{2}}+x+1}}dx$
Simplifying the above by splitting middle term of the quadratic equation.
As we know that,
$\Rightarrow -\dfrac{1}{6}\int{\dfrac{3}{{{x}^{2}}+x+1}}dx=-\dfrac{3}{6}\int{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}}dx}=-\dfrac{1}{2}\int{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}}dx}$
Let substitute\[s=x+\dfrac{1}{2}\ then\ ds=dx\],
$\Rightarrow -\dfrac{1}{2}\int{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}}dx}=-\dfrac{1}{2}\int{\dfrac{1}{{{s}^{2}}+\dfrac{3}{4}}dx}==-\dfrac{1}{2}\int{\dfrac{\dfrac{4}{3}}{\dfrac{4}{3}\left( {{s}^{2}}+\dfrac{3}{4} \right)}dx=-\dfrac{2}{3}\int{\dfrac{1}{\dfrac{4}{3}{{s}^{2}}+1}}}dx$
Let \[p=\dfrac{2}{\sqrt{3}}s\ then\ dp=\dfrac{2}{\sqrt{3}}ds\]
Therefore,
$\Rightarrow -\dfrac{2}{3}\int{\dfrac{1}{\dfrac{4}{3}{{s}^{2}}+1}}ds=-\dfrac{1}{\sqrt{3}}\int{\dfrac{1}{{{p}^{2}}+1}dp}$
The given integral is an arctangent integral.
Thus,
$=-\dfrac{1}{\sqrt{3}}\int{\dfrac{1}{{{p}^{2}}+1}dp}=-\dfrac{1}{\sqrt{3}}\arctan p+{{C}_{3}}$
Undo the substitution, we get
$\Rightarrow -\dfrac{1}{\sqrt{3}}\arctan p+{{C}_{3}}=-\dfrac{\sqrt{3}}{3}\arctan \left( \dfrac{\left( 2x+1 \right)\sqrt{3}}{3} \right)+{{C}_{3}}$
Now,
Combining all three integrals, we get
$\Rightarrow \int{\dfrac{1}{{{x}^{3}}-1}}=\dfrac{1}{3}\ln \left| x-1 \right|-\dfrac{1}{6}\ln \left| {{x}^{2}}+x+1 \right|-\dfrac{\sqrt{3}}{3}\arctan \left( \dfrac{\left( 2x+1 \right)\sqrt{3}}{3} \right)+C$
Taking out \[\dfrac{1}{6}\] as a common factor, we get
$\Rightarrow \int{\dfrac{1}{{{x}^{3}}-1}}=\dfrac{1}{6}\left( 2\ln \left| x-1 \right|-\ln \left| {{x}^{2}}+x+1 \right|-2\sqrt{3}\arctan \left( \dfrac{\left( 2x+1 \right)\sqrt{3}}{3} \right) \right)+C$
Hence, it is the required integration.
Note: When doing indefinite integration, always write $+c$ part after the integration. This $+c$ part indicates the constant part remains after integration and can be understood when you explore it graphically. Infinite integration constant gets cancelled out, so we only write it in indefinite integration.
Partial fraction of the rational fraction form $\dfrac{p(x)+q}{(x\pm a)(x\pm b)}$ is given as $\dfrac{A}{(x\pm a)}+\dfrac{B}{(x\pm b)}$
Find the value of A and B by comparing it with original integrand.
Complete step by step solution:
In order to integrate $\int{\dfrac{1}{{{x}^{3}}-1}}$ using partial fractions, we will first separate or express the integrand as sum of two integrands as follows;
We can rewrite ${{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)$using the identity.
$\dfrac{1}{{{x}^{3}}-1}=\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{A}{(x-1)}+\dfrac{Bx+C}{\left( {{x}^{2}}+x+1 \right)}$
Now, we will find the value of A,B and C by comparing both integrands as follows
\[\Rightarrow 1=A\left( {{x}^{2}}+x+1 \right)+\left( Bx+C \right)\left( x-1 \right)\]
Equating similar terms (constants and coefficients of the variable) we will get,
$\Rightarrow A+B=0\ \ then\ \Rightarrow A=-B$------ (1)
$\Rightarrow A-C=1\ \ then\ \Rightarrow C=A-1$------ (2)
$\Rightarrow A-B+C=0$------ (3)
Substituting equation (1) and equation (2) into equation (3),
$\Rightarrow A+A+A-1=0$
$\Rightarrow A=\dfrac{1}{3}$
$\Rightarrow B=-\dfrac{1}{3}$
$\Rightarrow C=\dfrac{1}{3}-1=\dfrac{1-3}{3}=-\dfrac{2}{3}$
Now we have the respective values of A, B and C, so putting them in the above considered integrands and then integrating them, we will get
$\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{1}{3(x-1)}+\dfrac{-\dfrac{1}{3}x-\dfrac{2}{3}}{\left( {{x}^{2}}+x+1 \right)}$
Simplifying the above expression, we get
$\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{1}{3(x-1)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}$
Integrating the resultant expression, we obtain
$\Rightarrow \int{\dfrac{1}{3(x-1)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}}dx$
Distributing the integration above subtraction, we will get
$\Rightarrow \int{\dfrac{1}{3(x-1)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}}dx=\int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}$
Now, we know that the integration of $\dfrac{1}{(x\pm a)}$ equals $\ln \left| x\pm a \right|+c$, so integrating the above functions using this formula, we will get
$\Rightarrow \int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}=\dfrac{1}{3}\ln \left| x-1 \right|+{{C}_{1}}-\dfrac{1}{3}\int{\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)}dx}$
We can rewrite this expression $\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)}$ as \[\dfrac{1}{2}\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)\]
Thus, substituting this value, we obtain
$\Rightarrow \int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}=\dfrac{1}{3}\ln \left| x-1 \right|+{{C}_{1}}-\dfrac{1}{3}\int{\dfrac{1}{2}\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)dx}$
Simplifying the above expression, we get
$\Rightarrow \int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}=\dfrac{1}{3}\ln \left| x-1 \right|+{{C}_{1}}-\dfrac{1}{6}\int{\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)dx}$
Now solving,
$\Rightarrow -\dfrac{1}{6}\int{\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)dx}=-\dfrac{1}{6}\ln \left| {{x}^{2}}+x+1 \right|+{{C}_{2}}-\dfrac{1}{6}\int{\dfrac{3}{{{x}^{2}}+x+1}}dx$
Simplifying the above by splitting middle term of the quadratic equation.
As we know that,
$\Rightarrow -\dfrac{1}{6}\int{\dfrac{3}{{{x}^{2}}+x+1}}dx=-\dfrac{3}{6}\int{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}}dx}=-\dfrac{1}{2}\int{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}}dx}$
Let substitute\[s=x+\dfrac{1}{2}\ then\ ds=dx\],
$\Rightarrow -\dfrac{1}{2}\int{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}}dx}=-\dfrac{1}{2}\int{\dfrac{1}{{{s}^{2}}+\dfrac{3}{4}}dx}==-\dfrac{1}{2}\int{\dfrac{\dfrac{4}{3}}{\dfrac{4}{3}\left( {{s}^{2}}+\dfrac{3}{4} \right)}dx=-\dfrac{2}{3}\int{\dfrac{1}{\dfrac{4}{3}{{s}^{2}}+1}}}dx$
Let \[p=\dfrac{2}{\sqrt{3}}s\ then\ dp=\dfrac{2}{\sqrt{3}}ds\]
Therefore,
$\Rightarrow -\dfrac{2}{3}\int{\dfrac{1}{\dfrac{4}{3}{{s}^{2}}+1}}ds=-\dfrac{1}{\sqrt{3}}\int{\dfrac{1}{{{p}^{2}}+1}dp}$
The given integral is an arctangent integral.
Thus,
$=-\dfrac{1}{\sqrt{3}}\int{\dfrac{1}{{{p}^{2}}+1}dp}=-\dfrac{1}{\sqrt{3}}\arctan p+{{C}_{3}}$
Undo the substitution, we get
$\Rightarrow -\dfrac{1}{\sqrt{3}}\arctan p+{{C}_{3}}=-\dfrac{\sqrt{3}}{3}\arctan \left( \dfrac{\left( 2x+1 \right)\sqrt{3}}{3} \right)+{{C}_{3}}$
Now,
Combining all three integrals, we get
$\Rightarrow \int{\dfrac{1}{{{x}^{3}}-1}}=\dfrac{1}{3}\ln \left| x-1 \right|-\dfrac{1}{6}\ln \left| {{x}^{2}}+x+1 \right|-\dfrac{\sqrt{3}}{3}\arctan \left( \dfrac{\left( 2x+1 \right)\sqrt{3}}{3} \right)+C$
Taking out \[\dfrac{1}{6}\] as a common factor, we get
$\Rightarrow \int{\dfrac{1}{{{x}^{3}}-1}}=\dfrac{1}{6}\left( 2\ln \left| x-1 \right|-\ln \left| {{x}^{2}}+x+1 \right|-2\sqrt{3}\arctan \left( \dfrac{\left( 2x+1 \right)\sqrt{3}}{3} \right) \right)+C$
Hence, it is the required integration.
Note: When doing indefinite integration, always write $+c$ part after the integration. This $+c$ part indicates the constant part remains after integration and can be understood when you explore it graphically. Infinite integration constant gets cancelled out, so we only write it in indefinite integration.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

