Answer
Verified
412.8k+ views
Hint: These type of question can be solved using the derivation, and we can use derivation of multiplication of two variables i.e., $\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$and derivative of log functions i.e., $\dfrac{d}{{dx}}\ln x = \dfrac{1}{x}$., and also integrating formula i.e., $\int {dx} = x + C$.
Complete answer:
Given question is $\int {{x^{{x^2} + 1}}\left( {2\ln x + 1} \right)} dx$.
We have to find the integration of the given question and this can be solved by using derivation, and the integration formulas.
Let${x^{{x^2}}} = t$,
Now applying log on both sides we get,
\[ \Rightarrow \]$\ln {x^{{x^2}}} = \ln t$
As using logarithms identity i.e.,$\ln {x^2} = 2\ln x$,
\[ \Rightarrow \]${x^2}\ln x = \ln t$,
Now differentiating on both sides we get,
\[ \Rightarrow \]$\dfrac{d}{{dx}}{x^2}\ln x = \dfrac{d}{{dx}}\ln t$,
Now using derivation of multiplication of two variables i.e., $\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$, we get,
\[ \Rightarrow \]$\ln x\dfrac{d}{{dx}}{x^2} + {x^2}\dfrac{d}{{dx}}\ln x = \dfrac{1}{t}dt$,
Now simplifying left hand side we get,
$ \Rightarrow \ln x\left( {2x} \right) + {x^2}\left( {\dfrac{1}{x}} \right) = \dfrac{1}{t}dt$ ,
Again simplifying on left side we get,
$ \Rightarrow 2x\ln x + x = \dfrac{1}{t}dt$,
Now taking t to L.H.S we get,
$ \Rightarrow tx\left( {2\ln x + 1} \right) = dt$,
Now substituting t value in the above equation we get,
$ \Rightarrow {x^{{x^2}}}x\left( {2\ln x + 1} \right) = dt$,
Now using exponential formulas i.e., ${x^a} \cdot {x^b} = {x^{a + b}}$we get,
$ \Rightarrow {x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = dt$,
Now integrating on both sides we get,
$ \Rightarrow \int {{x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = \int {dt} } $,
Now using integrating formulas we get,
$ \Rightarrow {x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = t + C$
Now substituting the value of t=${x^{{x^2}}}$ in the above equation we get,
$ \Rightarrow {x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = {x^{{x^2}}} + C$
Thus the integrated value of given equation will be ${x^{{x^2}}} + C$i.e.,
$\therefore {x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = {x^{{x^2}}} + C$.
The integrated value of given equation is ${x^{{x^2}}} + C$
So, $\therefore {x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = {x^{{x^2}}} + C$.
Note:
In these types of questions as we are using both derivation and integration formulas, students should not get confused as where to use the formulas and which one to use as there are many formulas in both derivations and integrations. Some of the important formulas that can be used are given below:
\[ \Rightarrow \]$\dfrac{d}{{dx}}x = 1$
\[ \Rightarrow \]$\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$
\[ \Rightarrow \]\[\dfrac{d}{{dx}}cx = c\]
\[ \Rightarrow \]$\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
\[ \Rightarrow \]$\dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{v\dfrac{d}{{dx}}u - u\dfrac{d}{{dx}}v}}{{{v^2}}}$
\[ \Rightarrow \]\[\dfrac{d}{{dx}}\ln x = \dfrac{1}{x}\]
\[ \Rightarrow \]\[\int {dx} = x + C\]
\[ \Rightarrow \]\[\int {\dfrac{1}{x}dx = \ln x} + C\]
\[ \Rightarrow \]\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \]
Complete answer:
Given question is $\int {{x^{{x^2} + 1}}\left( {2\ln x + 1} \right)} dx$.
We have to find the integration of the given question and this can be solved by using derivation, and the integration formulas.
Let${x^{{x^2}}} = t$,
Now applying log on both sides we get,
\[ \Rightarrow \]$\ln {x^{{x^2}}} = \ln t$
As using logarithms identity i.e.,$\ln {x^2} = 2\ln x$,
\[ \Rightarrow \]${x^2}\ln x = \ln t$,
Now differentiating on both sides we get,
\[ \Rightarrow \]$\dfrac{d}{{dx}}{x^2}\ln x = \dfrac{d}{{dx}}\ln t$,
Now using derivation of multiplication of two variables i.e., $\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$, we get,
\[ \Rightarrow \]$\ln x\dfrac{d}{{dx}}{x^2} + {x^2}\dfrac{d}{{dx}}\ln x = \dfrac{1}{t}dt$,
Now simplifying left hand side we get,
$ \Rightarrow \ln x\left( {2x} \right) + {x^2}\left( {\dfrac{1}{x}} \right) = \dfrac{1}{t}dt$ ,
Again simplifying on left side we get,
$ \Rightarrow 2x\ln x + x = \dfrac{1}{t}dt$,
Now taking t to L.H.S we get,
$ \Rightarrow tx\left( {2\ln x + 1} \right) = dt$,
Now substituting t value in the above equation we get,
$ \Rightarrow {x^{{x^2}}}x\left( {2\ln x + 1} \right) = dt$,
Now using exponential formulas i.e., ${x^a} \cdot {x^b} = {x^{a + b}}$we get,
$ \Rightarrow {x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = dt$,
Now integrating on both sides we get,
$ \Rightarrow \int {{x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = \int {dt} } $,
Now using integrating formulas we get,
$ \Rightarrow {x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = t + C$
Now substituting the value of t=${x^{{x^2}}}$ in the above equation we get,
$ \Rightarrow {x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = {x^{{x^2}}} + C$
Thus the integrated value of given equation will be ${x^{{x^2}}} + C$i.e.,
$\therefore {x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = {x^{{x^2}}} + C$.
The integrated value of given equation is ${x^{{x^2}}} + C$
So, $\therefore {x^{{x^2} + 1}}\left( {2\ln x + 1} \right) = {x^{{x^2}}} + C$.
Note:
In these types of questions as we are using both derivation and integration formulas, students should not get confused as where to use the formulas and which one to use as there are many formulas in both derivations and integrations. Some of the important formulas that can be used are given below:
\[ \Rightarrow \]$\dfrac{d}{{dx}}x = 1$
\[ \Rightarrow \]$\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$
\[ \Rightarrow \]\[\dfrac{d}{{dx}}cx = c\]
\[ \Rightarrow \]$\dfrac{d}{{dx}}\left( {u \cdot v} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
\[ \Rightarrow \]$\dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{v\dfrac{d}{{dx}}u - u\dfrac{d}{{dx}}v}}{{{v^2}}}$
\[ \Rightarrow \]\[\dfrac{d}{{dx}}\ln x = \dfrac{1}{x}\]
\[ \Rightarrow \]\[\int {dx} = x + C\]
\[ \Rightarrow \]\[\int {\dfrac{1}{x}dx = \ln x} + C\]
\[ \Rightarrow \]\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE